Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Активный
515
сегодня 6:49
Активный
516
сегодня 6:49
Активный
513
сегодня 6:49
Активный
556
сегодня 6:49
Активный
502
сегодня 6:49
Активный
550
сегодня 6:49
Активный
526
сегодня 6:49
Активный
533
сегодня 6:49
Активный
530
сегодня 6:49
Активный
510
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №143 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/v6fpodzg (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1257129 (OP) >>1253596 (OP)
сегодня 6:49
Активный
555
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №144 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/v6fpodzg (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1260769 (OP) >>1257129 (OP)
сегодня 6:49
Активный
513
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №145 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/v6fpodzg (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1265422 (OP) >>1260769 (OP)
сегодня 6:49
Активный
518
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №146 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/v6fpodzg (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1269456 (OP) >>1265422 (OP)
сегодня 6:49
Активный
551
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №147 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/v6fpodzg (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1273771 (OP) >>1269456 (OP)
сегодня 6:49
Активный
536
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №149 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Базы треда не существует, каждый дрочит как он хочет. Базашизика дружно репортим. Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/2ch_llm_2025 (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1280475 (OP) >>1277147 (OP)
сегодня 6:49
Активный
505
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №148 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/2ch_llm_2025 (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1277147 (OP) >>1273771 (OP)
сегодня 6:49
Активный
504
ИИ-видео общий №11 /video/ — Генерируем свое (и постим чужое) в Hunyuan, Wan, Veo3, Luma Dream Machine, Hailuo Minimax, Kling, Sora, Vidu, Runway, Pixverse, Pika и др. сервисах. 1. Hailuo Minimax https://hailuoai.video/ 2. Kling https://klingai.com/ 3. Sora от OpenAI https://openai.com/sora/ 4. Luma Dream Machine https://lumalabs.ai/ 5. Vidu https://www.vidu.com/create 6. Pixverse https://app.pixverse.ai/ 7. Pika https://pika.art/try 8. Runway Gen. 4 https://runwayml.com/ 9. Wan от Alibaba https://wan.video/ 10. Veo3 от Google https://deepmind.google/models/veo/ Сайты, где можно попробовать генерации на разных моделях https://nim.video/ https://pollo.ai/ https://www.florafauna.ai/ Коллекция ИИ-видео: https://www.reddit.com/r/aivideo/ Локальные модели 1. Hunyuan от Tencent. https://hunyuanvideoai.com/ https://github.com/Tencent/HunyuanVideo 2. Wan от Alibaba https://github.com/Wan-Video/Wan2.1 3. MAGI-1 от Sand AI https://sand.ai/magi https://github.com/SandAI-org/MAGI-1 Локальный UI https://github.com/comfyanonymous/ComfyUI Установка локальных моделей Hunyuan Video: https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/ Wan 2.1: https://comfyanonymous.github.io/ComfyUI_examples/wan/ Альтернативные ноды ComfyUI Hunyuan Video: https://github.com/kijai/ComfyUI-HunyuanVideoWrapper Wan 2.1: https://github.com/kijai/ComfyUI-WanVideoWrapper Квантованные чекпоинты Hunyuan Video (GGUF): https://huggingface.co/Kijai/SkyReels-V1-Hunyuan_comfy/tree/main Wan 2.1 (GGUF): https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/tree/main Wan 2.1 (NF4): https://civitai.com/models/1299436?modelVersionId=1466629 Где брать готовые LoRA https://civitai.com/models Hunyuan Video: https://civitai.com/search/models?baseModel=Hunyuan%20Video&sortBy=models_v9 Wan 2.1: https://civitai.com/search/models?baseModel=Wan%20Video&sortBy=models_v9 Обучение LoRA https://github.com/tdrussell/diffusion-pipe Предыдущий тред >>1253474 (OP)
сегодня 6:49
Активный
507
сегодня 6:49
Активный
66
Stable Diffusion технотред #20 /tech/ — ИТТ делимся советами, лайфхаками, наблюдениями, результатами обучения, обсуждаем внутреннее устройство диффузионных моделей, собираем датасеты, решаем проблемы и экспериментируем Тред общенаправленныей, тренировка дедов, лупоглазых и фуррей приветствуются Предыдущий тред: >>1118663 (OP) ➤ Софт для обучения https://github.com/kohya-ss/sd-scripts Набор скриптов для тренировки, используется под капотом в большей части готовых GUI и прочих скриптах. Для удобства запуска можно использовать дополнительные скрипты в целях передачи параметров, например: https://rentry.org/simple_kohya_ss https://github.com/bghira/SimpleTuner Линукс онли, бэк отличается от сд-скриптс https://github.com/Nerogar/OneTrainer Фич меньше, чем в сд-скриптс, бэк тоже свой ➤ GUI-обёртки для sd-scripts https://github.com/bmaltais/kohya_ss https://github.com/derrian-distro/LoRA_Easy_Training_Scripts ➤ Обучение SDXL https://2ch-ai.gitgud.site/wiki/tech/sdxl/ ➤ Flux https://2ch-ai.gitgud.site/wiki/nai/models/flux/ ➤ Гайды по обучению Существующую модель можно обучить симулировать определенный стиль или рисовать конкретного персонажа. ✱ LoRA – "Low Rank Adaptation" – подойдет для любых задач. Отличается малыми требованиями к VRAM (6 Гб+) и быстрым обучением. https://github.com/cloneofsimo/lora - изначальная имплементация алгоритма, пришедшая из мира архитектуры transformers, тренирует лишь attention слои, гайды по тренировкам: https://rentry.co/waavd - гайд по подготовке датасета и обучению LoRA для неофитов https://rentry.org/2chAI_hard_LoRA_guide - ещё один гайд по использованию и обучению LoRA https://rentry.org/59xed3 - более углубленный гайд по лорам, содержит много инфы для уже разбирающихся (англ.) ✱ LyCORIS (Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion) - проект по созданию алгоритмов для обучения дополнительных частей модели. Ранее имел название LoCon и предлагал лишь тренировку дополнительных conv слоёв. В настоящий момент включает в себя алгоритмы LoCon, LoHa, LoKr, DyLoRA, IA3, а так же на последних dev ветках возможность тренировки всех (или не всех, в зависимости от конфига) частей сети на выбранном ранге: https://github.com/KohakuBlueleaf/LyCORIS Подробнее про алгоритмы в вики https://2ch-ai.gitgud.site/wiki/tech/lycoris/ ✱ Dreambooth – для SD 1.5 обучение доступно начиная с 16 GB VRAM. Ни одна из потребительских карт не осилит тренировку будки для SDXL. Выдаёт отличные результаты. Генерирует полноразмерные модели: https://rentry.co/lycoris-and-lora-from-dreambooth (англ.) https://github.com/nitrosocke/dreambooth-training-guide (англ.) https://rentry.org/lora-is-not-a-finetune (англ.) ✱ Текстуальная инверсия (Textual inversion), или же просто Embedding, может подойти, если сеть уже умеет рисовать что-то похожее, этот способ тренирует лишь текстовый энкодер модели, не затрагивая UNet: https://rentry.org/textard (англ.) ➤ Тренировка YOLO-моделей для ADetailer: YOLO-модели (You Only Look Once) могут быть обучены для поиска определённых объектов на изображении. В паре с ADetailer они могут быть использованы для автоматического инпеинта по найденной области. Подробнее в вики: https://2ch-ai.gitgud.site/wiki/tech/yolo/ Не забываем про золотое правило GIGO ("Garbage in, garbage out"): какой датасет, такой и результат. ➤ Гугл колабы ﹡Текстуальная инверсия: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb ﹡Dreambooth: https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb ﹡LoRA https://colab.research.google.com/github/hollowstrawberry/kohya-colab/blob/main/Lora_Trainer.ipynb ➤ Полезное Расширение для фикса CLIP модели, изменения её точности в один клик и более продвинутых вещей, по типу замены клипа на кастомный: https://github.com/arenasys/stable-diffusion-webui-model-toolkit Гайд по блок мерджингу: https://rentry.org/BlockMergeExplained (англ.) Гайд по ControlNet: https://stable-diffusion-art.com/controlnet (англ.) Подборка мокрописек для датасетов от анона: https://rentry.org/te3oh Группы тегов для бур: https://danbooru.donmai.us/wiki_pages/tag_groups (англ.) NLP тэггер для кэпшенов T5: https://github.com/2dameneko/ide-cap-chan (gui), https://huggingface.co/Minthy/ToriiGate-v0.3 (модель), https://huggingface.co/2dameneko/ToriiGate-v0.3-nf4/tree/main (квант для врамлетов) Оптимайзеры: https://2ch-ai.gitgud.site/wiki/tech/optimizers/ Визуализация работы разных оптимайзеров: https://github.com/kozistr/pytorch_optimizer/blob/main/docs/visualization.md Гайды по апскейлу от анонов: https://rentry.org/SD_upscale https://rentry.org/sd__upscale https://rentry.org/2ch_nai_guide#апскейл https://rentry.org/UpscaleByControl Старая коллекция лор от анонов: https://rentry.org/2chAI_LoRA Гайды, эмбеды, хайпернетворки, лоры с форча: https://rentry.org/sdgoldmine https://rentry.org/sdg-link https://rentry.org/hdgfaq https://rentry.org/hdglorarepo https://gitgud.io/badhands/makesomefuckingporn https://rentry.org/ponyxl_loras_n_stuff - пони лоры https://rentry.org/illustrious_loras_n_stuff - люстролоры ➤ Legacy ссылки на устаревшие технологии и гайды с дополнительной информацией https://2ch-ai.gitgud.site/wiki/tech/legacy/ ➤ Прошлые треды https://2ch-ai.gitgud.site/wiki/tech/old_threads/ Шапка: https://2ch-ai.gitgud.site/wiki/tech/tech-shapka/
сегодня 6:49
Активный
509
сегодня 6:49
Активный
512
сегодня 6:49

Отзывы и предложения