НАПОМИНАЕМ, ОФИЦИАЛЬНЫЙ ТНУС-ТРЕД НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ДЕЙСТВИЯ СОЛИДАРНЫХ С НАМИ ГЕРОЕВ-АНОНОВ В ТЕМАТИКАХ/МИМИКРИРУЮЩИХ ЖАЛКИХ МОЛОЧНИЦ.
ПРОЦЕСС ДЕФЕКАЦИИ ТНЕЙ грязный, отвратительный, полная АНТИСАНИТАРИЯ 1. Забегает в туалет. Срывает труселя. Какие-то говняные полосы еще до начала сранья. 2. Серет и мочится одновременно, обоссывая жёппу, ляжки, пол и все вокруг. 3. Не закончив процесс, встает на ноги, оставляя между булками шматки висячего дерьма и измазывают им свою жопу. 4. Комкают туалетную бумагу и стоя на ногах, шоркают ей между булок. Для подтирания используют всего один-два таких комка. Не очистив свое очко, одним из этих грязных комков, подтирают вонючую пизду. 5. Надевают трусы на обоссанную и плохо вычищенную жопу и с невозмутимым еблетом возвращаются за столик в кафе, за парту или на рабочее место. А еще они в сортире нюхают свои труханы .
ПРОЦЕСС ДЕФЕКАЦИИ КУНОВ церемониальный, эстетичный, последовательный, ГИГИЕНИЧНЫЙ 1. Кун по-царски восседает на трон. 2. Аккуратно писает в унитаз и только после этого начинает какать, размышляя о судьбах мироздания. 3. После, складывает из туалетной бумаги многослойную салфетку и сидя подтирает попу. Одна салфетка – одно движение, и так до тех пор, пока очередная салфетка не останется чистой и сухой. 4. Надевает брюки, нажимает слив новой салфеткой, моет руки, покидает сан.узел. Блять, грязные шлюхи, ну почему вы не следите за своей гигиеной и чистотой, почему вы такие нечистоплотные?
FAQ для новоприбывших
Q: Что за хуйня тут происходит? A: Совершенно случайно была вскрыта ужасающая правда: тян (селёдки) совершенно не умеют соблюдать личную гигиену. После того как посрут и поссут, едва вытирают свои дырки подручными средствами: фантиками от конфет, руками, своими трусами и колготками. Это мерзко и совершенно несовместимо с их серьезными лицами после того, как они выходят из туалетов и строят из себя принцесс… с обосранными жопами.
Q: Вы что тут делаете вообще? Дрочите на видео как селёдки срут? А: Нет, мы насмехаемся над грязными серушками, формируем анти-селёдочную риторику и ниспровергаем глупые мифы, которые породили о себе селёдки.
Q: Кто вайпает тред? А: Селёдки которым НЕПРИЯТНО. Они визжат, что тут копрофилы дрочат на говно, при этом не желают воспринимать правды. Типичное поведение рыбы - подменять понятия и переводить тему в отсутствии аргументов.
Q: Ко-ко-ко, листва узнала, что шкуры срут A: Еще раз для даунов: Обсуждается не факт сранья, а его процесс и его последствия.
Q: Я чистоплотная сельдь, моюсь постоянно, два раза в день меняю белье, что насчет меня? A: Это лишь показывает, что ты от природы – смердящая дырка! Чтоб не вонять и не быть свиньей, тебе приходится оттирать свои клоаки с особой тщательностью по несколько раз в день. Мужчина же, может это делать лишь один раз в день, а то и раз в два дня оставаясь чистым и привлекательным.
Q: И чего вы добились? А: Как минимум, выработан новый категоричный императив: если селедка начинает умничать, всегда можно беспроигрышно апеллировать к тому, что она даже срать не умеет и у нее вся жопа в говне. При этом контраргументы в стиле «тебе просто не дают», лишь показательно утверждают неадекватность тупого инкубатора.
Q: Почему вы не расширите тему и не говорите, что тян уебища и мерзкие шлюхи? А: Потому, что эти призывы – ревизионизм и попытка селёдок извратить суть учения. Сделать перевод обсуждения вполне конкретной, подтвержденной пруфами проблемы, на пространные визги «тян не нужны» и «все тян шлюхи», чтобы потом объявить движение «очередными сексистами которым просто не дают». Не ведись, анон!
Q: Не стоит тогда унижать их, раз они по своей природе грязные уебища, ведь не можешь ты упрекнуть свинью в том что она валяется в грязи? А: Мы смеемся и насмехаемся, потому что нам смешно. Смех – естественное состояние человека. Мы насмехаемся над неумытыми селедками, точно так же как ты насмехаешься над обезьянами в цирке. Помните! ТНУС - это отрезвляющий глоток истины для каждой заблудшей овцы! Философия ТНУСа поведет за собой миллионы, воспитает ваших детей, задавит гнусную змею матриархальной лжи!
Отдел пропаганды ТНУС | WCIS Death Brigades – это самая последняя Группа, после которой уже не будет ниспослано никакой другой Группы. Обязательность признания и соблюдения указанных в Группе предписаний продлится вплоть до 1600го треда.
>>113354004 Нет, тут все бреют своё очко. У каждого в сан. узле. по 2 биде на человека. После каждой дефекации анон купоется в ванне с хлоркой. Старое белье с остальной одеждой сжигается. На чистое тело надевается новая.
Ещё раз задам вопрос. Тут кроме меня и суперколобка никто не репортил чтоль? Раз весь прошлый тред в каком-то говне был оч долго хотя его почти добило до лимита.
>>113354306 Ну я понял, что похуй. Поэтому и форсю.
В набеге на пикабу активно участвовали пятеро. Две старые группы вообще бесполезны. Даже вдесятером у нас бы получилось затролировать эту парашенскую пикабу.
Есть инфа, что для тни процесс сранья подобен маленьким родам. Для них каждая говёшка - как родное дитя. Оставляя на белье котяки, они стремятся оставить память о дитяти.
Тяжёлая вода (оксид дейтерия) — имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода — атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.
По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.
Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.
В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).
Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.
Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).
Физические свойства обычной и тяжёлой воды
Физические свойства D2O H2O
Молекулярная масса 20 18
Плотность при 20°C (г/см3) 1,1050 0,9982
t° кристаллизации (°C) 3,8 0
t° кипения (°C) 101,4 100 Свойства тяжёлой воды
Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.
Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).
Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.
Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.
Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:
• к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),
• к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).
Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов — радиоактивные, а стабильных вариантов всего девять: Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O. На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.
Тяжелая вода играет значительную роль в различных биологических процессах. Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.
За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.
Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.
Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.
И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.
Тяжёлая вода (оксид дейтерия) — имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода — атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.
По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.
Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.
В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).
Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.
Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).
Физические свойства обычной и тяжёлой воды
Физические свойства D2O H2O
Молекулярная масса 20 18
Плотность при 20°C (г/см3) 1,1050 0,9982
t° кристаллизации (°C) 3,8 0
t° кипения (°C) 101,4 100 Свойства тяжёлой воды
Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.
Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).
Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.
Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.
Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:
• к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),
• к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).
Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов — радиоактивные, а стабильных вариантов всего девять: Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O. На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.
Тяжелая вода играет значительную роль в различных биологических процессах. Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.
За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.
Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.
Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.
И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.
Тяжёлая вода (оксид дейтерия) — имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода — атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.
По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.
Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.
В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).
Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.
Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).
Физические свойства обычной и тяжёлой воды
Физические свойства D2O H2O
Молекулярная масса 20 18
Плотность при 20°C (г/см3) 1,1050 0,9982
t° кристаллизации (°C) 3,8 0
t° кипения (°C) 101,4 100 Свойства тяжёлой воды
Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.
Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).
Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.
Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.
Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:
• к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),
• к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).
Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов — радиоактивные, а стабильных вариантов всего девять: Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O. На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.
Тяжелая вода играет значительную роль в различных биологических процессах. Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.
За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.
Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.
Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.
И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С. В погоне за тритием. Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.
Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.
В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!
Синтез трития. Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.
В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций NH4Cl + D2O NH3DCl + HDO, NH3DCl + D2O NH2D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.
В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.
Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.
Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.
Обнаружение природного трития. Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.
При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
Франций (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, наиболее тяжелый элемент группы щелочных металлов Назван по имени Франции, родины М. Пере, открывшей (по радиоактивности) элемент (открытие – 1939; присвоение названия - 1964) среди продуктов распада ряда 235U. М. Перей удалось доказать, что ядра 227Ac в 12 случаях из 1000 испускают α-частицы и при этом переходят в ядра элемента №87 с массовым числом 223, который и выделила Перей (AcK). Франций образуется при α-распаде 227Ас по схеме Один из редчайших и наименее устойчивых из всех радиоактивных элементов, встречающихся в природе. 3.1 Изотопы франция Известно более 25 изотопов франция с массовыми числами от 203 до 229; все они очень неустойчивы (периоды полураспада от 22 мин до 5⋅10-3 с). Из них 223Fr и 224Fr встречаются в природе, являясь членами естественных радиоактивных семейств 235U и 232Th. Наиболее долгоживущий β-радиоактивный 223Fr (T1/2 = 21,8 мин, испускает β-лучи, Емакс=1,2 МэВ и α-частицы с пробегом в воздухе 3,5 см) – член одной из побочных ветвей радиоактивного ряда урана-235 и может быть выделен из природных урановых минералов. Другой важный изотоп франция 222Fr (α, ЭЗ) и имеет период полураспада 19,3 мин. 212Fr может быть получен в результате реакций глубокого расщепления урана и тория протонами высоких энергий. 227Ac → 223Fr 1,4 процента, сопровождается α-излучением 227Ac → 227Th 98,6 процентов, сопровождается β-излучением Наиболее важным источником 22Э Fr являются препараты актиния, получающиеся при нейтронном облучении радия по схеме Периодическая система элементов H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc RuRh PdAg Cd In Sn Sb Te I Xe Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh Hs MtDsRgUubUutUuqUupUuhUusUuo La Ce Pr Nd PmSmEuGdTb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Его старое название— «актиний К» (AcK). Как член радиоактивного ряда 235U, 223Fr в ничтожных количествах присутствует в природе, причём 1 атом Fr приходится на 3·1018 атомов природного урана. В равновесии с 1 кюри 227Ас находится 2,510-8 г 223Fr. Согласно расчёту, в поверхностном слое Земли толщиной 1,6 км содержится около 24,5 г Fr. По оценкам, его равновесное содержание в земной коре равно 340 г. Кроме того, в одной из побочных ветвей радиоактивного ряда тория содержится франций-224 с периодом полураспада 3,0 минуты. Его равновесное содержание в земной коре составляет лишь 0,5 г. Микроскопические количества 223Fr и 224Fr могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций. Изотопы Франция образуются при реакциях глубокого отщепления на тории, а также в реакциях многозарядных ионов, ускоренных до высоких энергий, с различными элементами, например 197Au(16O,xn)213Fr, 203Tl(12C,xn)215Fr, 208Pb(11B,xn)219Fr. 221Fr является продуктом распада ряда нептуния. 3.2 Физические и химические свойства Нейтральный атом франция в основном состоянии имеет электронную конфигурацию [Rn]7s1 . В соответствии с этим единственной степенью окисления франция является +1. Свойства франция изучены недостаточно из-за невозможности выделения весомых количеств. Химически самый активный из всех щелочных металлов - похож по свойствам на цезий. Всегда сокристаллизуется с его соединениями. Плотность Fr может быть 2,5 г/см³, температура плавления 8—11 C (экстраполяция по щелочным металлам), кипения 640—660 C Все химические свойства франция изучены радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10-15 г (массовая активность 223Fr составляет 1,7⋅1015 Бк/мг). В соответствии с положением в периодической системе франций должен иметь более отрицательный стандартный потенциал E0 Me/Me+, чем цезий. Поэтому он может быть выделен только на ртутном катоде. Однако амальгама франция очень неустойчива и разлагается через несколько минут после выключения тока. Конфигурация внешней электронной оболочки атома франция. 7s 1 , атомный радиус 2,77 Å, атомный объём 80,5-98 см3 /г-атом, радиус иона Fr+ 1,81 Å. Плотность 2,48 г/см 3 , tпл-8-11о , tким=6490-679о С, потенциал ионизации Frо →Fr+ →Fr2+ 3,98 и 21 эВ, соответственно. Во всех соединениях франций проявляет степень окисления +1. Оптический спектр Fr+ состоит из широконо дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Франция 106,8 ккал/моль. В растворах франций ведёт себя как типичный щелочной металл, по свойствам он больше всего напоминает цезий. Почти все соли франция хорошо растворимы в воде; при кристаллизации франций изоморфно осаждается с гетерофосфорновольфрамовой и гетерофосфорномолибденовой кислотами из сильно кислых растворов HCl и HNO3, c перхлоратом, пикратом, тартратом, гексахлорплатинатом и др. солями цезия, а также кобальтонитритом натрия и цезия из углекислого раствора. Табл. 10. Некоторые изотопы франция Франций / Francium (Fr) Атомный номер 87 Внешний вид радиоактивный щелочной металл Свойства атома Атомная масса (молярная масса) 223,0197 а.е.м. (г/моль) Электронная конфигурация [Rn] 7s1 Химические свойства Радиус иона (+1e) 180 пм Электроотрицательность (по Полингу) 0,7 Электродный потенциал Fr←Fr+ −2,92 В Степени окисления +1 Термодинамические свойства Температура плавления 300 K Теплота плавления 15 кДж/моль Температура кипения 950 K Кристаллическая решётка Структура решётки Кубическая объёмноцентрированая Являясь самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу. Большинство солей франция хорошо растворимы в воде. К трудно растворимым соединениям франция относятся перхлорат, пикраткобальтинитрит, хлороплатинат и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Из сильно кислых растворов франций количественно выделяется с гетерополикислотами состава H8[Si(W2О7)6]⋅nH2O и H7[P(W2)6]⋅nН2O. Среди галогенидов франция наиболее изучен хлорид. Важным свойством хлорида франция является его летучесть; температура начала возгонки FrCl составляет в воздухе 225° С, в вакууме 110° С. Поведение хлоридов Франция и цезия при различных температурах позволило создать методы разделения этих элементов в виде летучих хлоридов. Франций получают в микроколичествах, выделяя его из смеси) продуктов распада ряда актиноурана, облученных препаратов радия, из смеси продуктов глубокого расщепления тория или других тяжелых элементов. Достаточно сложной проблемой является также отделение франция от его специфического носителя цезия. Независимо от пути получения франция первой стадией его выделения чаще всего является соосаждение с гетерополикислотами. Дальнейшая очистка производится методами ионного обмена и распределительной хроматографии. Метод ионного обмена с применением катионитов КУ-1 и Дауэкс-50 с успехом используется как для выделения франция из продуктов распада ряда актиноурана (рис. 30), так и для отделения франция от цезия (рис. 31). В качестве элюентов используются растворы НС1 различной концентрации. Отделение этим методом Франция от тяжелых щелочных металлов основано на увеличении коэффициента распределения с уменьшением радиуса гидратированного иона в ряду Rb < Cs < Fr. В последнее время выделение франция осуществляется методом экстракционной хроматографии, основанным на экстракции тетрафенилбората франция нитробензолом, нанесенным на силикагель. Франций и цезий элюируются из колонки растворами соляной или азотной кислот различной концентрации. Отделение франция от других природных радиоактивных элементов (Ac, Th и др.) можно провести экстракционными или хроматографическими методами. Отделение Франция от актиния достигается осаждением последнего аммиаком, сульфидом аммония, карбонатом натрия или фтористоводородной кислотой, с использованием лантана, как носителя. Франций при этом остаётся в растворе, из которого он концентрируется (после добавления в качестве носителя цезия).
>>113356035 Блядь, как меня бесит что эти тупые жирные шлюхи ногой становятся на унитаз. При этом так по быдлянски, это для них так привычно. Теперь я понимаю почему в пидорашке во многих общественных порашных остались дырки вместо унитазов.
>>113356204 Поэтому селедкам так печёт. Боятся что ТНУС-парадигма распространится на рунет. Наша задача - сделать всё, чтобы как можно больше людей узнала об этом.
Надо найти статистику, сколько срут и ссут ТНУСы и сколько времени проводят в туалете куны. В год, за жизнь. И сравнить. Анон, найди такие цифры меня в гугле забанили
>>113357996 Старая, жалкая селёдка. В интернетах у тебя останутся по-прежнему такие же немытые таджики и овцеебы кавказа. Но белые люди будут проклинать, гнать и закидывать камнями таких как ты. А теперь уебывай
>>113357637 Ну, я зашел. Посмотрел пару вебмок с чуханкамибольшинство в возрасте и менструирующие. Сагу поскрывал. Дальше что? Кого атаковать? Престарелых и менстрящих? Чем бы ни заниматься детям, лишь бы в школу не ходить.
>>113358400 Цель? Как ссали криво - так и будут ссать, трогать анусы, выковыривать ногтями дерьмо и подтираться одним клочком, больше которого даже трамвайный билет. И так же у них будет кровавая слизь свисать. И ногами на унитазы будут залезать. Соснешь, как обычно, займись полезным чем-то. >чего как маленький Действительно, чего это я, бухой, бесноватых детей увещеваю? Так, высказался и алибидерчи, сами потом докумекаете и будете жалеть.
Блядь! Я буду мстить! Я хуй месяцами мыть не буду! И с накопленной творожной массой пердолить тнус во все дыры с контрольным в голову!! Контрольный в голову - обязательно!!!
Вы заметили кстати, как старые селедки, еще те, "тигрицы чата" когда были модемы по 56кб, всегда пытаются вставить слово последней.
Знаете почему? Я вам расскажу.
У меня была ТНУС, которая смотрела камеди-уман, да , это полный пиздец. Ну так вот, она блядь копировала! Копировала, сука тупая, модель поведение всех этих выблядских сук, которые там выступают.
Эти бляди почему-то перенимают всегда самое худшее. И даже если слышат о себе анекдоты, которые тупым шлюхам должны быть уроком, они берут именно ту модель поведения, которая высмеивается.
Это примитивные животные, у которых одно преимущество - их вонючие пизденки. Поэтому они так боятся ТНУС-тредов
>>113358769 Да ты и есть то самое рачьё. Рачной тред - априори бессмысленный. 75 этих - именно такие. Давай, взял вилку и пошел вычищать сам себя. Чисти-чисти. За работу.
>>113358769 >Очистить доску от рачья. По сути эта мотивация ничуть не сильнее аргументов нынешней псевдодемократии - верят им лишь абсолютно наивные или совсем отчаявшиеся люди. А что делать всем остальным? М? Эзотерическая тропа Мёбиуса - путь единиц, и вряд ли такое спасение собственной шкуры можно назвать подвигом. Я назову вам путь спасения всех и каждого. И теперь вы должны быть предельно внимательными. Потому что я готов раскрыть вам сегодня великое знание! Путь - это
>>113358980 Согласен. А самое мерзкое, что они еще пытаются что-то там исправить в нас. И почти большинство уверено в этом. Тупых шлюх ТНУС нужно сразу приземлять. А лучше вообще вытирать об них ноги или не общаться.
>>113358962 Например, если я встречу в треде пиздострадальца, я сразу кину ссыль на архивач, если ирл увижу такого, покажу видосы. Поциент вылечится в мгновения кака. Этого мало? Вот, мне, сука не дал ссылку на ТНУС-треды, приходилось самому с этой хуйней разбираться. шлюхи боятся или не боятся похуй, но их падение в цене неизбежно
>>113359128 Да даже если бы ты им видосы скидывал, где именно их еот сосет пяток грязных негрочленов - это их не вылечит. А тут хуевого качества привокзальные туалеты, где какая-то бабка дрыщет.
>>113358964 Было слишком очевидно, что ты так ответишь. Зачем тогда сидишь в этом треде? Рулетки крутятся, пиздолисы жалуются и просят сисечек, иди туда, к олдфагам.
>>113359304 Могу потому что. Ни рулетосы, ни еоты-пиздолизы мне не мешают. Даже, прости господи, вот уж верх деградантства, десктоп-треды, и те мне не мешают. И это дерьмецо мне не мешает. Просто зайду, поскроллю, скажу детям что они не очень умные, и дальше скроллить.
>>113353544 (OP) Посоны, наше движение вызвыло небывалое бурление говн. А это значит, что мы движемся в правильную сторону. Но нужна модернизация и терпение. Только не говорите селедкам, подобное унижение может хотя бы частично перевоспитать их или хотя бы заставить притворятся так как нам удобно. Нам нужно выжидать, перекатываться, пересиживать вапйы и форсить. Только въевшийся в память долговременный форс способен сдвинуть дело с мертвой точки. Запасайтесь терпением, купите охладители пуканов, придумывайте контент. Лес нам поможет.
>>113359311 Ничоси ты на ноль поделил. Адекват и в пиздострадание не ударится, это удел омежного школья, которое, как тебе ведомо, невменяемо и непробиваемо.
АХАХХАХА СИЛЕДКИ В 5 УТРА ВАЙПАЮТ Я ДАЖИ ЗНАЮТ АТКУДА АХАХАХ ВОТ ДУРА ТО МЫ ВСЕ РАВНО СИЛЬНЕЕ)) МНЕ 24 И Я БУДУ ВЕЗДЕ ВАС ТРАВИТЬ ТУПЫЕ СРУЩИЕ ВЛАГАЛИЩА, ТЕПЕРЬ ЭТО МОЯ МИССИЯ, РАНЬШЕ Я БЫЛ ТАКИМ ЖЕ НО ТЕПЕРЬ КОГДА Я УВИДЕЛ КАК ВЫ СРЕТЕ ЕБАТЬ СУКИ ПУКаЕТЕ ЕЩЕ НЕБОСЬ БЛЯ))) ГРЯЗНЫЕ ДЫРКИ ВАЙПАЙТЕ САГАЙТЕ Я ДО ВАС БЛЯТЬ ДОБЕРУСЬ ЕЩЕ)
>>113359570 >Движение вызвыло небывалое бурление говн. Оподливился В тред пишут не больее 10 человек. одна половина - семены, траллы, шкальнеки другая - адекватные аноны
>>113359686 6.36 жи Поймал себя на том, что скучаю по недавним временам, когда главной обсуждаемой проблемой в России была - действительно ли видна пиписка у статуи на 100 рублёвой купюре или депутатам Госдумы опять делать нечего?
- Вы читали выступление министра Улюкаева? Он сказал, что к 2030 году Россия станет страной, где никого не будет интересовать стоимость нефти и курс доллара к рублю. - Он, скорее всего, мягко намекает, что ни у кого не будет денег ни на автомобиль, ни на поездку за границу.
>>113359924 Кому еще? Тот, кто этим не интересуется просто скроет тред и забудет. Что-то пытаться доказать будут только невменяемые селёдки и их поехавшие пиздолисы.
Фишер Гений, лучший игрок 20 века >О женщинах: шахматы лучше. >Нет такой женщины, у которой я не выиграл бы, даже дав коня вперёд. >В школе нечему учиться. Учителя глупы. Нельзя, чтобы учителями работали женщины. В моей школе только учитель физкультуры был неглуп - он неплохо играл в шахматы.
Мужик едет на встречу, опаздывает, нервничает, не может найти место припарковаться. Поднимает лицо к небу и говорит: — Господи, помоги мне найти место для парковки. Я тогда брошу пить и буду каждое воскресенье ходить в церковь! Вдруг чудесным образом появляется свободное местечко. Мужик снова обращается к небу: — А, всё, не надо. Нашёл!
- Ватсон, а что это вы курите? Дайте угадаю - табак "Королева Вирджиния" с листочками вишни, из юбилейного выпуска в бархатной упаковке? - Поразительно, Холмс! Как это вы угадали? - Ей-богу, Ватсон! Ну не миссис Хадсон же спиздила из моей комнаты последнюю пачку!
>>113359686 24 самый опасный возраст. Я чуть не женился на вонючей ТНУС в это время. Мой долг, из мужской солидарности, распространять всю правду о шлюхах ТНУС, начиная от соседних тредов, заканчивая пабликами.
>>113360679 АААХАХАХАХАХ ВЫ ГЛЯДИТЕ КА ЗА НИМ ПОСЛЕДНЕЕ СЛОВО, ОХ ЗАГЛАВНОБУКВЕННЫЙ МОЛОДЕЦ КААКОЙ СДЕЛАЛ ЕГО РАССКАЗЫВАЙТЕ ВСЕМ ВСЕМ ВСЕМ ПРО СРУЩИХ БАБ, ДРУЗЬЯМ РОДНЫМ БЛИЗКИМ ТЕБЯ ПОЙМУТ И ПРИМУТ ТЫ ГЛАВНОЕ УСПЕХИ СВОИ ВЫКЛАДЫВАЙ И КОНТАКТЫ ОСТАВЬ ЧТОБ НЕ ПРОЕБАТЬ ТРЕД, ТЫ МОЖНО СКАЗАТЬ ГЛАВАРЬ НАШЕЙ БАНДЫ) БРАВОЕ ДЕЛО ПАРНИ)
Живу в общаге. Раньше тут жила одна соседка, пиздец, после нее в сортир невозможно было зайти. Взрослая замужняя женщина, а смывать так и не научилась. Как ни зайду - постоянно накурено и унитаз полон жёлто-бурой вонючей ссанины. Пиздец короче.
>>113361106 Иди проспись, пидр. У неё блядь между ног ужасная вонючая сифилисная дырка. Как будто какой-то калека срёт и пытается вытереться. Вызывает омерзение, если ты не ницшианец, тогда просто ненависть и желание убить. а этот быдло ебальник. БЛЯЯЯЯДЬ СУКА
Манямирок /б/ пошатнулся. Сука, лол я в 10 лет знал насколько мерзко срут и ссут все тни, не подтираясь, с струями мочи по бедрам до колен. А тут целое открытие, 25 тредов. Даже боюсь представить, что будет здесь, когда /б/ узнает о том как пахнут месячные
>>113361381 Тухлятиной, возьмите кусок мяса, налейте туда крови, поссыте, можно немного говнеца и положите на 3 дня на батарею. Вот примерно такой запах. Это пиздец, вы думаете почему в рекламах прокладок говорят "не пропускает запах", а сами прокладки с внешней стороны делаются из полиэтилена, потому что вонь непередаваемая. Знал тню, которая один вечер не подмылась во время месячных, РЕАЛЬНО воняло прямо через джинсы по всему помещению. Объясняю почему: из шейки матки выходит не только, как многие думают кровь, но и сгустки, комки и подобное, все это остается прямо ВНУТРИ вагины, и не имея мощной струи душа тня не может промыть внутри влагалища начисто.
>>113361448 > >Тухлятиной, возьмите кусок мяса, налейте туда крови, поссыте, можно немного говнеца и положите на 3 дня на батарею. Вот примерно такой запах. >Это пиздец, вы думаете почему в рекламах прокладок говорят "не пропускает запах", а сами прокладки с внешней стороны делаются из полиэтилена, потому что вонь непередаваемая. Знал тню, которая один вечер не подмылась во время месячных, РЕАЛЬНО воняло прямо через джинсы по всему помещению. >Объясняю почему: из шейки матки выходит не только, как многие думают кровь, но и сгустки, комки и подобное, все это остается прямо ВНУТРИ вагины, и не имея мощной струи душа тня не может промыть внутри влагалища начисто.
>>113361448 Лол, помню на первом курсе на лекции ко мне подсела опоздавшая на пару тян. До нее запах в помещении был нормальный, как только она села резко завоняло тухлой рыбой и мочей, что меня аж чуть не вырвало, хотя к неприятным запахам я обычно терпелив (в армейке, в наряде по столовой гнилой лук перебирал - остальных рвало, а меня нет). После перемены от этой тян несло не просто мочей и рыбой, а мочей с тухлой рыбой в перемешку с дичайшим количеством ПАРФЮМА (как будто она вылила на себя весь флакон духов).
У цыган, кажется, есть понятия что нельзя касаться одежды тян, которая ниже пояса. Юбки там всякие. видимо они знали правду надо погуглить на эту тему.
Отсюда можно сделать вполне себе вывод. Начнём по порядку. Если посудить логически, то можно придти к довольно простому выводу: чем длиннее маникюр, тем более неудобно становится с ним заниматься любыми рутинными вещами, не говоря уже о подтирании задницы. Из этого следует, что девушки с длинным маникюром гораздо более вынуждены заморачиваться подтиранием задницы, нежели девочки с обычными ногтями. Как мы можем видеть на предоставленных видеофайлах, девочки и так не очень сильно обеспокоены о чистоте своих промежностей. Теперь представьте, если девочка с обычными ногтями имея возможность НОРМАЛЬНО подтереться, потратив на это лишнюю минуту абсолютно не заморачивается вопросом гигиены, и качественного "соскребания" каловых масс со своего заднепроходного отверстия про мочу, растекающуюся по заднице я скромно промолчу, тогда представьте, какой ужас творится у девочек с дорогим маникюром, и длинными ногтями в целом? Ведь если так и есть, то маникюр не позволяет девочкам вообще хоть как-то убрать каловые массы из столь слознодоступной части тела. Соответственно, из всего вышеописанного, подводу итог: чем ухоженнее и длиннее у девочек ногти, тем более грязной промежностью они располагают, не имея желания думать об элементарной гигиене.
>>113362606 >остоянный секс или баба есть вряд ли станут тут так хуесосить пёзд вонючих, одни дрочилы ёпта мать Двачую хуеносца, одни девственники и школота втреди.
АХАХХААЗАЗЗА ВЫ ТОКА ПОГЛЯДИТЕ СЕЛЕДКЕ ПРИПЕКЛО)) ВАЛИ В КУДХТНИК СВОЙ ТУТ ПАЦАНЫ ВЕЩИ НАСУЩНЫЕ ОБСУЖДАЮТ ЕБАТЬ МЫ ВАС НЕ СОБИРАЕМСЯ ПОНЯТНО СУКА??? ТУТ У ПАРНЕЙ ПСИХИКА НЕ ВЫДЕРЖАЛА ТЕПЕРЬ ВОРОТИТ ОТ ВАС ВОНЮЧИХ ТВАРЕЙ ТАК ЧТО ИДИ ОТСЕДАВА И ГАВНО СВАЁ НА ТРУСАХ УНЕСИ))) ПАЦАНЫ ДАВАЙТЕ ЗАБЬЕМСЯ БОЛЬШЕ БАБ НЕ ЕБАТЬ, ОНИ ЖЕ ВОНЯЮТ ВАЩЕ ПИЗДЕЦ ВОТ КАЖДАЯ ВОНЮЧАЯ ЕБАНАЯ ДЫРКА, МЕНЯ АЖ ВОРОТИТ ОТ ИХ ВАРЕНИКА ВОНЯЮТ ТОКА ХОДЯТ БЛЯЬ НОГТИ ОТРАЩИВАЮТ ПОТОМ НЕ ПОДТИРАЮТСЯ Я ЕБАЛ ПРОСТО ТАКОЙ РАСКЛАД, ЛЕЗЕЖБ БЛЯТЬ В КЛУБЕ В ПИЛОТКУ НАХУЙ ПОТОМ НЮХАЕШЬ РУКУ БЛЯ И ПИЗДЕЦ НАХУЙ ВОНЬ ЯЕБУ БЕЛЕНЬКУЮ ХОТЬ ЗАНЮХИВАЙ, Я ДУМАЮ ТЕПЕРЬ ТОКА С ПАРНЯМИ ОБЩАТСЯ, НУ ВЫ ПОНЯЛИ ДА В КАКОМ СМЫСЛЕ?))) УЖ ЛУЧШЕ ВОЛОСАТАЯ СРАКА С ЯЙЦАМИ ЧЕМ ОБДРЫЩЕНЫЕ ГУБЫ ЕПТА))) КТО ЗА ПИШИТЕ)
1. Знакомясь с бабой если это еще кому-то нужно, лол, обязательно обращайте внимание на все запахи от нее, не стоит дать себя обмануть духами и ароматизаторами, научитесь выявлять среди них запахи говна и мочи, следите за возможными пятнами говна на одежде и руках. 2. Если баба норовит взять вас за руку, мягко отклоняйте ее, пускай лучше берет под руку, ибо вероятность офоршмачиться об верхнюю одежду ниже. 3. В общественных местах (кафе, рестораны, кинотеатры етц) внимательно следите за бабой, дабы не упустить время, когда она пойдет в уборную. После её возвращения бдительность нужно утроить, не стоит касаться её, а также предметов, с которыми она контактировала незащищенными частями своего тела. 4. Танцующую на дискотеке бабу нужно обходить стороной, 75% что она уже до этого срала, а не вытертое говно размокло от пота и пропитало одежду. Лучше сидеть за столиком и с брезгливой усмешкой поглядывать на это грязное чмо. 5. Если дело дошло до ебли, ни в коем случае не начинать ее спонтанно, можно лишь позволить отсосать, т.к. по последним данным бабий рот еще пока не офоршмачен говном и мочой. Для полноценной ебли бабу надо гнать в душ, крайне желательно лично проследить, чтобы она тщательно помыла пизду и жопу несколько раз, можно потребовать продезинфицировать все тело бабы каким-либо антисептическим раствором. Крайне важно следить, чтобы между душем и еблей баба не побежала в туалет, ибо тогда все усилия пойдут насмарку. 6. Уже прирученной бабе нужно обязательно провести лекцию о гигиене, демонстрируя на большом экране вебмки из ТНУС-тредов, провести в туалет, рассказать подробно для чего нужен унитаз, как правильно на него садиться, как вытирать жопу, подмывать жопу и пизду. Рассказать про ванну и душ, как часто нужно мыться, показать шампунь или мыло, научить пользоваться. Обязательно продемонстрировать урну, объяснить для каких она целей, провести небольшую лекцию по сантехнике, объяснив, что труба не забьется от говняных бумажек, а в урне они будут выглядеть и пахнуть дурно.
Вместе следуя этим простым правилам, мы заставим грязных баб стать чуточку чистоплотнее, а также огородим себя от опасностей зашквара бабским говном и мочой.
>>113362939 Лучше тереть его своей нежной ладошкой, пропитанной увлажняющим кремом. Ничто не сравнится с этим ощущением. Мясная дырка даже рядом не стоит.
АНАНАСЫ Я СПАТЬ ДЕЛАЙТЕ ПЕРЕКАТ ДЛЯ УТРЕННЕГО АНОНА АНАНАСЫ Я СПАТЬ ДЕЛАЙТЕ ПЕРЕКАТ ДЛЯ УТРЕННЕГО АНОНА АНАНАСЫ Я СПАТЬ ДЕЛАЙТЕ ПЕРЕКАТ ДЛЯ УТРЕННЕГО АНОНА АНАНАСЫ Я СПАТЬ ДЕЛАЙТЕ ПЕРЕКАТ ДЛЯ УТРЕННЕГО АНОНА АНАНАСЫ Я СПАТЬ ДЕЛАЙТЕ ПЕРЕКАТ ДЛЯ УТРЕННЕГО АНОНА
Есть важный вопрос. Когда рождаешься, то ведь выходишь из утроба мамки и шкваришься о кровь, мочу и слизь, не говоря уже о том, что касаешься своим писюном её пизды. Как теперь жить с этим?
>>113364289 Сам не знаю, но молва идёт... ...пизда у эскимоски холоднее, чем лёд! Хорошо! Очень хорошо! Точно хорошо! Замечательно! На вкус приличная! Пизда отличная! Хорошо тебе! Хорошо мне!
НАПОМИНАЕМ, ОФИЦИАЛЬНЫЙ ТНУС-ТРЕД НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ДЕЙСТВИЯ СОЛИДАРНЫХ С НАМИ ГЕРОЕВ-АНОНОВ В ТЕМАТИКАХ/МИМИКРИРУЮЩИХ ЖАЛКИХ МОЛОЧНИЦ.
ПРОЦЕСС ДЕФЕКАЦИИ ТНЕЙ грязный, отвратительный, полная АНТИСАНИТАРИЯ 1. Забегает в туалет. Срывает труселя. Какие-то говняные полосы еще до начала сранья. 2. Серет и мочится одновременно, обоссывая жёппу, ляжки, пол и все вокруг. 3. Не закончив процесс, встает на ноги, оставляя между булками шматки висячего дерьма и измазывают им свою жопу. 4. Комкают туалетную бумагу и стоя на ногах, шоркают ей между булок. Для подтирания используют всего один-два таких комка. Не очистив свое очко, одним из этих грязных комков, подтирают вонючую пизду. 5. Надевают трусы на обоссанную и плохо вычищенную жопу и с невозмутимым еблетом возвращаются за столик в кафе, за парту или на рабочее место. А еще они в сортире нюхают свои труханы .
ПРОЦЕСС ДЕФЕКАЦИИ КУНОВ церемониальный, эстетичный, последовательный, ГИГИЕНИЧНЫЙ 1. Кун по-царски восседает на трон. 2. Аккуратно писает в унитаз и только после этого начинает какать, размышляя о судьбах мироздания. 3. После, складывает из туалетной бумаги многослойную салфетку и сидя подтирает попу. Одна салфетка – одно движение, и так до тех пор, пока очередная салфетка не останется чистой и сухой. 4. Надевает брюки, нажимает слив новой салфеткой, моет руки, покидает сан.узел. Блять, грязные шлюхи, ну почему вы не следите за своей гигиеной и чистотой, почему вы такие нечистоплотные?
FAQ для новоприбывших
Q: Что за хуйня тут происходит? A: Совершенно случайно была вскрыта ужасающая правда: тян (селёдки) совершенно не умеют соблюдать личную гигиену. После того как посрут и поссут, едва вытирают свои дырки подручными средствами: фантиками от конфет, руками, своими трусами и колготками. Это мерзко и совершенно несовместимо с их серьезными лицами после того, как они выходят из туалетов и строят из себя принцесс… с обосранными жопами.
Q: Вы что тут делаете вообще? Дрочите на видео как селёдки срут? А: Нет, мы насмехаемся над грязными серушками, формируем анти-селёдочную риторику и ниспровергаем глупые мифы, которые породили о себе селёдки.
Q: Кто вайпает тред? А: Селёдки которым НЕПРИЯТНО. Они визжат, что тут копрофилы дрочат на говно, при этом не желают воспринимать правды. Типичное поведение рыбы - подменять понятия и переводить тему в отсутствии аргументов.
Q: Ко-ко-ко, листва узнала, что шкуры срут A: Еще раз для даунов: Обсуждается не факт сранья, а его процесс и его последствия.
Q: Я чистоплотная сельдь, моюсь постоянно, два раза в день меняю белье, что насчет меня? A: Это лишь показывает, что ты от природы – смердящая дырка! Чтоб не вонять и не быть свиньей, тебе приходится оттирать свои клоаки с особой тщательностью по несколько раз в день. Мужчина же, может это делать лишь один раз в день, а то и раз в два дня оставаясь чистым и привлекательным.
Q: И чего вы добились? А: Как минимум, выработан новый категоричный императив: если селедка начинает умничать, всегда можно беспроигрышно апеллировать к тому, что она даже срать не умеет и у нее вся жопа в говне. При этом контраргументы в стиле «тебе просто не дают», лишь показательно утверждают неадекватность тупого инкубатора.
Q: Почему вы не расширите тему и не говорите, что тян уебища и мерзкие шлюхи? А: Потому, что эти призывы – ревизионизм и попытка селёдок извратить суть учения. Сделать перевод обсуждения вполне конкретной, подтвержденной пруфами проблемы, на пространные визги «тян не нужны» и «все тян шлюхи», чтобы потом объявить движение «очередными сексистами которым просто не дают». Не ведись, анон!
Q: Не стоит тогда унижать их, раз они по своей природе грязные уебища, ведь не можешь ты упрекнуть свинью в том что она валяется в грязи? А: Мы смеемся и насмехаемся, потому что нам смешно. Смех – естественное состояние человека. Мы насмехаемся над неумытыми селедками, точно так же как ты насмехаешься над обезьянами в цирке.
Помните! ТНУС - это отрезвляющий глоток истины для каждой заблудшей овцы! Философия ТНУСа поведет за собой миллионы, воспитает ваших детей, задавит гнусную змею матриархальной лжи!
вы дауны-дегенераты. никто из нормальных тян так не срет и(!) главное, не подтирается. возможно, на этот сайт просто специально кидают таких девушек. потому что в мире миллиарды тян, из них какой-то процент конечно будет нечистоплотен. не верите - просто поставьте камеру у себя в туалете и смотрите как подтирается ваша мамаша или сестра.
>>113364704 >Твоей мамашки, ебаное даунито блеать, мне зачем это надо, совсем дерьмо голову залило. это же вас вставляет смотреть на срущих девушек. 75 тредов. пиздец.
>>113358964 Да нет, дружок, рак это ты, если не зеленый. Такие как ты и скатили двачик в говно. А теперь ты приходишь в годный тред и всем высказываешь свое охуительное мнение.
ТРЕД#75
НАПОМИНАЕМ, ОФИЦИАЛЬНЫЙ ТНУС-ТРЕД НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ДЕЙСТВИЯ СОЛИДАРНЫХ С НАМИ ГЕРОЕВ-АНОНОВ В ТЕМАТИКАХ/МИМИКРИРУЮЩИХ ЖАЛКИХ МОЛОЧНИЦ.
ПРОЦЕСС ДЕФЕКАЦИИ ТНЕЙ грязный, отвратительный, полная АНТИСАНИТАРИЯ
1. Забегает в туалет. Срывает труселя. Какие-то говняные полосы еще до начала сранья.
2. Серет и мочится одновременно, обоссывая жёппу, ляжки, пол и все вокруг.
3. Не закончив процесс, встает на ноги, оставляя между булками шматки висячего дерьма и измазывают им свою жопу.
4. Комкают туалетную бумагу и стоя на ногах, шоркают ей между булок. Для подтирания используют всего один-два таких комка. Не очистив свое очко, одним из этих грязных комков, подтирают вонючую пизду.
5. Надевают трусы на обоссанную и плохо вычищенную жопу и с невозмутимым еблетом возвращаются за столик в кафе, за парту или на рабочее место. А еще они в сортире нюхают свои труханы .
ПРОЦЕСС ДЕФЕКАЦИИ КУНОВ церемониальный, эстетичный, последовательный, ГИГИЕНИЧНЫЙ
1. Кун по-царски восседает на трон.
2. Аккуратно писает в унитаз и только после этого начинает какать, размышляя о судьбах мироздания.
3. После, складывает из туалетной бумаги многослойную салфетку и сидя подтирает попу. Одна салфетка – одно движение, и так до тех пор, пока очередная салфетка не останется чистой и сухой.
4. Надевает брюки, нажимает слив новой салфеткой, моет руки, покидает сан.узел.
Блять, грязные шлюхи, ну почему вы не следите за своей гигиеной и чистотой, почему вы такие нечистоплотные?
FAQ для новоприбывших
Q: Что за хуйня тут происходит?
A: Совершенно случайно была вскрыта ужасающая правда: тян (селёдки) совершенно не умеют соблюдать личную гигиену. После того как посрут и поссут, едва вытирают свои дырки подручными средствами: фантиками от конфет, руками, своими трусами и колготками. Это мерзко и совершенно несовместимо с их серьезными лицами после того, как они выходят из туалетов и строят из себя принцесс… с обосранными жопами.
Q: Вы что тут делаете вообще? Дрочите на видео как селёдки срут?
А: Нет, мы насмехаемся над грязными серушками, формируем анти-селёдочную риторику и ниспровергаем глупые мифы, которые породили о себе селёдки.
Q: Кто вайпает тред?
А: Селёдки которым НЕПРИЯТНО. Они визжат, что тут копрофилы дрочат на говно, при этом не желают воспринимать правды. Типичное поведение рыбы - подменять понятия и переводить тему в отсутствии аргументов.
Q: Ко-ко-ко, листва узнала, что шкуры срут
A: Еще раз для даунов: Обсуждается не факт сранья, а его процесс и его последствия.
Q: Я чистоплотная сельдь, моюсь постоянно, два раза в день меняю белье, что насчет меня?
A: Это лишь показывает, что ты от природы – смердящая дырка! Чтоб не вонять и не быть свиньей, тебе приходится оттирать свои клоаки с особой тщательностью по несколько раз в день. Мужчина же, может это делать лишь один раз в день, а то и раз в два дня оставаясь чистым и привлекательным.
Q: И чего вы добились?
А: Как минимум, выработан новый категоричный императив: если селедка начинает умничать, всегда можно беспроигрышно апеллировать к тому, что она даже срать не умеет и у нее вся жопа в говне. При этом контраргументы в стиле «тебе просто не дают», лишь показательно утверждают неадекватность тупого инкубатора.
Q: Почему вы не расширите тему и не говорите, что тян уебища и мерзкие шлюхи?
А: Потому, что эти призывы – ревизионизм и попытка селёдок извратить суть учения. Сделать перевод обсуждения вполне конкретной, подтвержденной пруфами проблемы, на пространные визги «тян не нужны» и «все тян шлюхи», чтобы потом объявить движение «очередными сексистами которым просто не дают». Не ведись, анон!
Q: Не стоит тогда унижать их, раз они по своей природе грязные уебища, ведь не можешь ты упрекнуть свинью в том что она валяется в грязи?
А: Мы смеемся и насмехаемся, потому что нам смешно. Смех – естественное состояние человека. Мы насмехаемся над неумытыми селедками, точно так же как ты насмехаешься над обезьянами в цирке.
Помните! ТНУС - это отрезвляющий глоток истины для каждой заблудшей овцы! Философия ТНУСа поведет за собой миллионы, воспитает ваших детей, задавит гнусную змею матриархальной лжи!
РЕПОЗИТОРИЙ:
https://mega.nz/#F!kpZzGKJZ!rEtsUWqtnR-_fdOHRV5YmQ
КООРДИНАЦИЯ НАБЕГОВ: http://vk.com/club111835468
АРХИВ
0. https://arhivach.org/thread/136794/
1. https://arhivach.org/thread/137117/
2. https://arhivach.org/thread/137147/
3. https://arhivach.org/thread/137149/
4. https://arhivach.org/thread/137212/
5. https://arhivach.org/thread/137256/
6. ...
7. https://arhivach.org/thread/137292/
8. https://arhivach.org/thread/137338/
9. https://arhivach.org/thread/137367/
10. https://arhivach.org/thread/137381/
11. https://arhivach.org/thread/137416/
12. https://arhivach.org/thread/137460/
13. https://arhivach.org/thread/137507/
14. https://arhivach.org/thread/137528/
15. https://arhivach.org/thread/137574/
16. ...
17. https://arhivach.org/thread/137604/
18. https://arhivach.org/thread/137618/
19. https://arhivach.org/thread/137626/
20. https://arhivach.org/thread/137640/
21. https://arhivach.org/thread/137650/
22. https://arhivach.org/thread/137663/
23. https://arhivach.org/thread/137685/
24. https://arhivach.org/thread/137703/
25. https://arhivach.org/thread/137733/
26. https://arhivach.org/thread/137759/
27. https://arhivach.org/thread/137778/
28. https://arhivach.org/thread/137800/
29. https://arhivach.org/thread/137822/
30. https://arhivach.org/thread/137890/
31. https://arhivach.org/thread/137929/
32. https://arhivach.org/thread/137930/
33. https://arhivach.org/thread/137944/
34. https://arhivach.org/thread/137964/
35. https://arhivach.org/thread/137980/
36. https://arhivach.org/thread/137995/
37. https://arhivach.org/thread/138005/
38. https://arhivach.org/thread/138023/
39. https://arhivach.org/thread/138028/
40. https://arhivach.org/thread/138090/
41. ...
42. https://arhivach.org/thread/138139/
43. https://arhivach.org/thread/138141/
44. https://arhivach.org/thread/138166/
45. https://arhivach.org/thread/138174/
46. https://arhivach.org/thread/138190/
47. https://arhivach.org/thread/138208/
48. https://arhivach.org/thread/138214/
49. https://arhivach.org/thread/138235/
50. https://arhivach.org/thread/138263/
51. ...
52. https://arhivach.org/thread/138322/
53. https://arhivach.org/thread/138327/
54. https://arhivach.org/thread/138343/
55. https://arhivach.org/thread/138382/
56. https://arhivach.org/thread/138449/
57. https://arhivach.org/thread/138468/
58. https://arhivach.org/thread/138488/
59. https://arhivach.org/thread/138489/
60. https://arhivach.org/thread/138521/
61. https://arhivach.org/thread/138542/
62. https://arhivach.org/thread/138564/
63. https://arhivach.org/thread/138587/
64. https://arhivach.org/thread/138639/
65. https://arhivach.org/thread/138696/
66. https://arhivach.org/thread/138719/
67. https://arhivach.org/thread/138728/
68. https://arhivach.org/thread/138756/
69. https://arhivach.org/thread/138757/
70. https://arhivach.org/thread/138769/
71. https://arhivach.org/thread/138796/
72. https://arhivach.org/thread/138812/
73. https://arhivach.org/thread/138861/
74. https://arhivach.org/thread/138906/
Шаблон с разметкой: http://pastebin.com/jHnfbFpX
Перекатываясь соблюдайте каноничность и блюдите список архивача.