Команда Михаила Лукина создала в 2017 году один из самых мощных квантовых компьютеров. С помощью ученого РБК разбирается, каковы критерии успеха в квантовой гонке и когда стоит ждать квантового превосходства.
Двадцать лет назад квантовые компьютеры считались фантастикой, а скоро они будут удивлять нас не больше, чем обычный ПК. «Я думаю, лет через пять-десять уже во многих областях человеческой деятельности без квантовых технологий обойтись будет невозможно», — говорит профессор Гарварда Михаил Лукин, команда которого в 2017 году создала один из самых мощных квантовых компьютеров.
Михаил Лукин уехал в Америку около четверти века назад.(Все съебывают из сраной рашки) В 1993 году выпускника факультета физической и квантовой электроники МФТИ пригласил в аспирантуру Техасского университета A&M Марлан Скалли, всемирно известный исследователь в сфере квантовой оптики. В Техасе в 1998 году Лукин защитил диссертацию об использовании лазеров для контроля над средой. Но свои главные научные эксперименты Михаил Лукин сделал в следующем десятилетии в Гарвардском университете. Здесь он стал профессором физики, затем — содиректором Гарвардского центра квантовой физики и Центра ультрахолодных атомов.
«Мне очень повезло: в Гарварде я оказался на особых условиях. Обычный постдок (ученый, недавно получивший степень PhD, что примерно соответствует российскому кандидату наук. — РБК) должен работать в одной научной группе и заниматься каким-то конкретным узкоспециализированным проектом. У меня же была полная свобода», — рассказал Лукин журналу РБК.
Лукин говорит, что его и его коллег много раз звали работать на корпорации, включившиеся в гонку по созданию квантового компьютера, но он неизменно отказывается: «Я бы сказал, до сих пор самая креативная деятельность в этой области происходит все-таки в университетах».
В атмосфере «рабочей вседозволенности»(В ПОРАШЕ ТАКОЕ БЫЛОБЫ НЕВОЗМОЖНО) в течение последних 16 лет ученый и его группа провели эксперименты, поразившие научный мир: вроде остановки света или создания фотонных молекул — материи, похожей на световые мечи из «Звездных войн» — и временных кристаллов, структур, до этого существовавших только в теории. В течение этих лет он также вынашивал идею эксперимента по квантовым вычислениям, который летом 2017-го года прославил Лукина и его лабораторию на весь мир.
Квантовая информатика
Еще в начале 1990-х годов идею создания квантовых компьютеров даже в научном сообществе никто не воспринимал всерьез, говорит Лукин: «Но потом произошло сразу две, если можно так сказать, революции».
В 1994 году американец Питер Шор разработал квантовый алгоритм факторизации, названный потом его именем. «Умножить два простых числа, даже очень больших — просто, а найти, на какие простые множители делится большое число — очень сложная для компьютера задача. Факторизация лежит в основе всей современной криптографии», — объясняет Лукин.
Обычные компьютеры способны взламывать современные криптографические системы, но у них на это уходит так много ресурсов и времени, что результат оказывается бесполезным. Квантовый же компьютер сможет решать такие задачи практически мгновенно, и алгоритм Шора стал первым доказательством практического смысла создания таких устройств. «Во-вторых, в то же самое время произошли большие сдвиги в экспериментальной физике: ученые научились хорошо охлаждать атомы, изолировать отдельные частицы», — продолжает Лукин.
В том же поворотном для квантовых компьютеров 1994 году вышла научная статья двух европейских физиков, Петера Цоллера и Хуана Игнасио Сирака, в которой они описали квантовый компьютер с использованием ионной ловушки. «Квантовая информатика только зарождалась, у других исследователей были лишь абстрактные идеи квантовых компьютеров, никто всерьез даже не размышлял, можно его сделать или нет. Публикация Цоллера и Сирака изменила все: стало ясно, что построить квантовый компьютер возможно, и даже появилось конкретное предложение как», — вспоминает Лукин.
С авторами статьи Михаил встретился в начале 2000-х: «Они уже были известными людьми, а я — молодым начинающим ученым. Но оказалось, что наши идеи очень похожи. Мы объединили усилия и написали серию статей, в которых теоретически описали идеи, легшие в основу нашей сегодняшней практической работы».
В 2000-х многие научные группы начали проводить эксперименты на сверхпроводниках — материалах, при низких температурах полностью теряющих электрическое сопротивление. Группа Лукина, в свою очередь, решила попробовать сделать упор на «холодных атомах» — частицах, охлажденных практически до абсолютного нуля и помещенных в оптические ловушки, созданные лазерами. При соблюдении необходимых условий их можно использовать в качестве достаточно стабильных квантовых битов (кубитов).
Делать реальный квантовый вычислитель Лукин в середине 2000-х не решился: проект казался слишком рискованным, не хватало технологической базы. Несколько лет его группа в Гарварде изучала другие способы сделать кубиты для квантового компьютера — например, из примесей в алмазе. Из таких исследований появлялись и другие практические проекты: например, бывшие студенты профессора придумали, как из алмазов делать квантовые сенсоры для медицины.
В 2010-х годах квантовые вычисления перестали обсуждать исключительно в лабораториях научных центров — ими всерьез заинтересовались крупные ИТ-компании.
Настоящие квантовые
Несколько лет назад о намерении построить работающие прототипы квантовых компьютеров заявила не только давно изучавшая эту сферу компания IBM, но и ранее не замеченные в ней Google, Intel и Microsoft. При этом канадская компания D-Wave с 2011 года уже выпускает и продает «настоящие квантовые компьютеры» — сначала мощностью 16, затем 28, а спустя пару лет — 512 кубит. Сегодня компания предлагает уже 2000-кубитные компьютеры. У D-Wave серьезный пул покупателей: Google, NASA, Lockheed Martin, Volkswagen Group. Непосвященному человеку может показаться, что квантовое будущее уже наступило — и да, и нет.
D-Wave выпускает так называемые адиабатические компьютеры — для понимания их отличий от полноценных квантовых компьютеров придется прочитать хотя бы краткий курс квантовой физики. В прикладном смысле разница заключается в том, что компьютеры D-Wave способны решать только очень узкий круг задач, связанных с оптимизацией. В Google, например, для компьютера D-Wave подобрали одну задачу, которую адиабатический компьютер решил в миллионы раз быстрее, чем классический. Но извлечь из этого реальную пользу было нельзя, а для решения других задач машина не предназначена. Успехи в области создания «настоящих» квантовых компьютеров скромнее: до последнего времени их мощность не превышала 17–20 кубитов, и Лукин говорит, что пару лет назад не верил в возможность создания устройства большей мощности. Но летом 2017 года группа Лукина сообщила о создании работающего прототипа квантового симулятора на 51 кубит, а буквально через месяц группа профессора Кристофера Монро из Мэрилендского университета заявила о создании симулятора на 53 кубита. Устройства и результаты первых экспериментов, проведенных на них, описаны в статье, опубликованной в журнале Nature в конце ноября. Атомы в оптических ловушках и сверхпроводники — это сегодня две опережающие все другие технологии создания квантовых компьютеров, рассказал журналу РБК профессор Кристофер Монро. «Оба подхода сейчас находятся на этапе, когда у нас уже есть четкое представление о том, как строить довольно большие устройства, и есть идеи, как их масштабировать, — отметил он. — Сверхпроводники пока что показывают более низкую производительность, но поскольку кубиты здесь печатаются на чипе, их легче масштабировать.
От себя добавлю что квантовые компьютеры будут не мощнее обычны, они лишь выигрывают в производительности по некоторым алгоритмам, так говорил один ученый по квантовой физике.
>>2196022 (OP) >Все съебывают из сраной рашки Ну и правильно, а то было бы как тут >>2193920 (OP) Только вместо удаленного управления - квантовый путинатор, ну на хуй такое, ну нахуй.
>>2196022 (OP) А ещё мелкомягкие месяц назад сделоли эмулятор квантового пеки на 3 кубита. Так и не смог установить, так как это эбола хотела занимать 20 гб на ссд, пиздос Из обидного, всем машин лёрнинг макакам придётся подстраиваться под рыночек->как обычно часть людей потеряют работку, часть подсуетившихся найдут.
Так ведь если создать такой компьютер как описано в статье и реализовать алгоритм факторизации, то взломать любой кошелёк биткоина станет очень легкой задачей. Что тогда будем делать?
>>2196022 (OP) >и временных кристаллов, структур, до этого существовавших только в теории Антуаны, поясните тупому гуманитарию, что это за ебола такая? Как вообще такое может быть? Я имею ввиду время это же нечто не материальное, время это же выдумка? Как вообще у времени может быть структура? Ну т.е. можно умозрительно структурировать время, а тут речь о чем-то физическом. Блять, у меня это в голове не укладывается!
>>2196236 Ну если отталкиваться от того, что время не существует отдельно от пространства, то вполне себе можно вообразить себе какие-нибудь кристаллы времени. Хотя не исключено, что тут какое-то наебалово с названием и те самые кристаллы имеют ровным счётом нихуя общего с какими-нибудь кристаллами соли, например.
>>2196236 >время это же нечто не материальное, время это же выдумка? Ну почему же, время вполне себе свойство материи (грубо говоря конечно). Опять же очень грубо (просто чудовищно): представь что весь мир состоит из маленьких частичек (не атомов, поменьше). Каждый из них занимает определенное положение относительно друг друга, что можно описать трехмерной системой координат (какая грубость, сука). Но ведь они же еще и шевелятся, сталкиваются там друг с другом, в результате чего занимают новое положение. Теперь мысленно нарисуй путь каждой частички во всей вселенной, от "начала" существования до "конца". Это и будет то что мы привыкли называть временем, что-то вроде четвертого измерения в нашей системе координат. Временные кристаллы как я понял имеют повторяющуюся структуру вот по этой четвертой оси. Ну я сам гуманитарий.
>>2196298 >Теперь мысленно нарисуй Вот хотел тебя ткнуть в то, что это все умозрительно, а потом вспомнил, что "искривления времени" под влиянием гравитации таки зафиксировали опытным путем.
>имеют повторяющуюся структуру вот по этой четвертой оси У меня аж мозг закипел, в попытках представить эту хуйню. Где можно почитать об этом, чтобы хоть немного начать понимать? Что-нибудь для конченных дебилов, с чудовищными допущениями и условностями, простым и доступным языком.
>>2196236 Вспомнилось как читал об эксперименте где в реактивный самолет поставили часы и после полета сравнили результат с такими же часами на земле. Разница была очень мала, но все таки была. Часики из самолета немного отставали. Время вблизи черных дыр так же замедляется, если верить ученым. Если все это на самом деле так то вполне можно допустить что время подвержено влиянию из вне как минимум.
>>2196186 А, возможно ты в другом смысле. Потому что мелкомягкие а ещё потому что он хочет быстрее обращаться к системным файлам, которые очевидно на системном диске
>>2196352 Спасибо, доброанон! Блять, жиды в натуре б-го избранный народ, только они в этой хуйне по-настоящему шарят.
Кстати, пацаны, стоит ли курить каббалу или тору, чтобы постичь тайны мироздания? Или эти сакральные учения слишком круты для постижения обычной пидорашкой?
>>2196328 Механизм часов в самолете испытывал перегрузки, и из-за этого часики замедляли свой ход. А ты думал это самолет прорывал пространственно-временной континуум и часы это отражали что ли?
>>2196411 >А ты думал это самолет прорывал пространственно-временной континуум и часы это отражали что ли? Он же типикал релятивист(официально одобренная партиями всех стран физическая основа). Чем выше скорость- тем выше уровень прорыва континуума.
>>2196022 (OP) >Команда Михаила Лукина создала в 2017 году один из самых мощных квантовых компьютеров. А нахрена он нужен, если для ГТА 5 и Фоллаута 4 хватает даже i5?!
Двадцать лет назад квантовые компьютеры считались фантастикой, а скоро они будут удивлять нас не больше, чем обычный ПК. «Я думаю, лет через пять-десять уже во многих областях человеческой деятельности без квантовых технологий обойтись будет невозможно», — говорит профессор Гарварда Михаил Лукин, команда которого в 2017 году создала один из самых мощных квантовых компьютеров.
Михаил Лукин уехал в Америку около четверти века назад. (Все съебывают из сраной рашки) В 1993 году выпускника факультета физической и квантовой электроники МФТИ пригласил в аспирантуру Техасского университета A&M Марлан Скалли, всемирно известный исследователь в сфере квантовой оптики. В Техасе в 1998 году Лукин защитил диссертацию об использовании лазеров для контроля над средой. Но свои главные научные эксперименты Михаил Лукин сделал в следующем десятилетии в Гарвардском университете. Здесь он стал профессором физики, затем — содиректором Гарвардского центра квантовой физики и Центра ультрахолодных атомов.
«Мне очень повезло: в Гарварде я оказался на особых условиях. Обычный постдок (ученый, недавно получивший степень PhD, что примерно соответствует российскому кандидату наук. — РБК) должен работать в одной научной группе и заниматься каким-то конкретным узкоспециализированным проектом. У меня же была полная свобода», — рассказал Лукин журналу РБК.
Лукин говорит, что его и его коллег много раз звали работать на корпорации, включившиеся в гонку по созданию квантового компьютера, но он неизменно отказывается: «Я бы сказал, до сих пор самая креативная деятельность в этой области происходит все-таки в университетах».
В атмосфере «рабочей вседозволенности» (В ПОРАШЕ ТАКОЕ БЫЛОБЫ НЕВОЗМОЖНО) в течение последних 16 лет ученый и его группа провели эксперименты, поразившие научный мир: вроде остановки света или создания фотонных молекул — материи, похожей на световые мечи из «Звездных войн» — и временных кристаллов, структур, до этого существовавших только в теории. В течение этих лет он также вынашивал идею эксперимента по квантовым вычислениям, который летом 2017-го года прославил Лукина и его лабораторию на весь мир.
Квантовая информатика
Еще в начале 1990-х годов идею создания квантовых компьютеров даже в научном сообществе никто не воспринимал всерьез, говорит Лукин: «Но потом произошло сразу две, если можно так сказать, революции».
В 1994 году американец Питер Шор разработал квантовый алгоритм факторизации, названный потом его именем. «Умножить два простых числа, даже очень больших — просто, а найти, на какие простые множители делится большое число — очень сложная для компьютера задача. Факторизация лежит в основе всей современной криптографии», — объясняет Лукин.
Обычные компьютеры способны взламывать современные криптографические системы, но у них на это уходит так много ресурсов и времени, что результат оказывается бесполезным. Квантовый же компьютер сможет решать такие задачи практически мгновенно, и алгоритм Шора стал первым доказательством практического смысла создания таких устройств. «Во-вторых, в то же самое время произошли большие сдвиги в экспериментальной физике: ученые научились хорошо охлаждать атомы, изолировать отдельные частицы», — продолжает Лукин.
В том же поворотном для квантовых компьютеров 1994 году вышла научная статья двух европейских физиков, Петера Цоллера и Хуана Игнасио Сирака, в которой они описали квантовый компьютер с использованием ионной ловушки. «Квантовая информатика только зарождалась, у других исследователей были лишь абстрактные идеи квантовых компьютеров, никто всерьез даже не размышлял, можно его сделать или нет. Публикация Цоллера и Сирака изменила все: стало ясно, что построить квантовый компьютер возможно, и даже появилось конкретное предложение как», — вспоминает Лукин.
С авторами статьи Михаил встретился в начале 2000-х: «Они уже были известными людьми, а я — молодым начинающим ученым. Но оказалось, что наши идеи очень похожи. Мы объединили усилия и написали серию статей, в которых теоретически описали идеи, легшие в основу нашей сегодняшней практической работы».
В 2000-х многие научные группы начали проводить эксперименты на сверхпроводниках — материалах, при низких температурах полностью теряющих электрическое сопротивление. Группа Лукина, в свою очередь, решила попробовать сделать упор на «холодных атомах» — частицах, охлажденных практически до абсолютного нуля и помещенных в оптические ловушки, созданные лазерами. При соблюдении необходимых условий их можно использовать в качестве достаточно стабильных квантовых битов (кубитов).
Делать реальный квантовый вычислитель Лукин в середине 2000-х не решился: проект казался слишком рискованным, не хватало технологической базы. Несколько лет его группа в Гарварде изучала другие способы сделать кубиты для квантового компьютера — например, из примесей в алмазе. Из таких исследований появлялись и другие практические проекты: например, бывшие студенты профессора придумали, как из алмазов делать квантовые сенсоры для медицины.
В 2010-х годах квантовые вычисления перестали обсуждать исключительно в лабораториях научных центров — ими всерьез заинтересовались крупные ИТ-компании.
Настоящие квантовые
Несколько лет назад о намерении построить работающие прототипы квантовых компьютеров заявила не только давно изучавшая эту сферу компания IBM, но и ранее не замеченные в ней Google, Intel и Microsoft.
При этом канадская компания D-Wave с 2011 года уже выпускает и продает «настоящие квантовые компьютеры» — сначала мощностью 16, затем 28, а спустя пару лет — 512 кубит. Сегодня компания предлагает уже 2000-кубитные компьютеры. У D-Wave серьезный пул покупателей: Google, NASA, Lockheed Martin, Volkswagen Group. Непосвященному человеку может показаться, что квантовое будущее уже наступило — и да, и нет.
D-Wave выпускает так называемые адиабатические компьютеры — для понимания их отличий от полноценных квантовых компьютеров придется прочитать хотя бы краткий курс квантовой физики. В прикладном смысле разница заключается в том, что компьютеры D-Wave способны решать только очень узкий круг задач, связанных с оптимизацией. В Google, например, для компьютера D-Wave подобрали одну задачу, которую адиабатический компьютер решил в миллионы раз быстрее, чем классический. Но извлечь из этого реальную пользу было нельзя, а для решения других задач машина не предназначена.
Успехи в области создания «настоящих» квантовых компьютеров скромнее: до последнего времени их мощность не превышала 17–20 кубитов, и Лукин говорит, что пару лет назад не верил в возможность создания устройства большей мощности. Но летом 2017 года группа Лукина сообщила о создании работающего прототипа квантового симулятора на 51 кубит, а буквально через месяц группа профессора Кристофера Монро из Мэрилендского университета заявила о создании симулятора на 53 кубита. Устройства и результаты первых экспериментов, проведенных на них, описаны в статье, опубликованной в журнале Nature в конце ноября.
Атомы в оптических ловушках и сверхпроводники — это сегодня две опережающие все другие технологии создания квантовых компьютеров, рассказал журналу РБК профессор Кристофер Монро. «Оба подхода сейчас находятся на этапе, когда у нас уже есть четкое представление о том, как строить довольно большие устройства, и есть идеи, как их масштабировать, — отметил он. — Сверхпроводники пока что показывают более низкую производительность, но поскольку кубиты здесь печатаются на чипе, их легче масштабировать.
Продолжение читайте сдесь https://www.rbc.ru/magazine/2018/01/5a393ff49a794761b9379d07
Кому нужны красивые картинки камплюктера заходить сюда: https://itc.ua/blogs/vot-tak-vyiglyadit-50-kubitnyiy-kvantovyiy-kompyuter-ibm/
От себя добавлю что квантовые компьютеры будут не мощнее обычны, они лишь выигрывают в производительности по некоторым алгоритмам, так говорил один ученый по квантовой физике.