Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Активный
512
25 августа 20:13
Сохранен
511
ИИ-видео общий №6 /video/ — Генерируем свое (и постим чужое) в Hunyuan, Wan, Luma Dream Machine, Hailuo Minimax, Kling, Sora, Vidu, Runway, Pixverse, Pika и др. сервисах. 1. Hailuo Minimax https://hailuoai.video/ 2. Kling https://klingai.com/ 3. Sora от OpenAi https://openai.com/sora/ 4. Luma Dream Machine https://lumalabs.ai/ 5. Vidu https://www.vidu.com/create 6. Pixverse https://app.pixverse.ai/ 7. Pika https://pika.art/try 8. Runway Gen. 3 https://runwayml.com/ 9. Wan от Alibaba https://wan.video/ Сайты, где можно попробовать генерации на разных моделях https://pollo.ai/ https://www.florafauna.ai/ https://nim.video/ Коллекция ИИ-видео: https://www.reddit.com/r/aivideo/ Локальные модели 1. Hunyuan от Tencent. https://hunyuanvideoai.com/ https://github.com/Tencent/HunyuanVideo 2. Wan от Alibaba https://github.com/Wan-Video/Wan2.1 Локальный UI https://github.com/comfyanonymous/ComfyUI Установка локальных моделей Hunyuan Video: https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/ Wan 2.1: https://comfyanonymous.github.io/ComfyUI_examples/wan/ Альтернативные ноды ComfyUI Hunyuan Video: https://github.com/kijai/ComfyUI-HunyuanVideoWrapper Wan 2.1: https://github.com/kijai/ComfyUI-WanVideoWrapper Квантованные чекпоинты Hunyuan Video (GGUF): https://huggingface.co/Kijai/SkyReels-V1-Hunyuan_comfy/tree/main Wan 2.1 (GGUF): https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/tree/main Wan 2.1 (NF4): https://civitai.com/models/1299436?modelVersionId=1466629 Где брать готовые LoRA https://civitai.com/models Hunyuan Video: https://civitai.com/search/models?baseModel=Hunyuan%20Video&sortBy=models_v9 Wan 2.1: https://civitai.com/search/models?baseModel=Wan%20Video&sortBy=models_v9 Обучение LoRA https://github.com/tdrussell/diffusion-pipe Предыдущий тред >>1082918 (OP)
8 августа 4:50
Сохранен
511
11 июля 22:29
Сохранен
511
22 июня 12:34
Сохранен
511
AI Image GeneratorsОбщий Картиночный #1 /image/ — Общий тред для изображений, созданных с помощью онлайн ИИ-генерации. Bing Image Creator и Designer https://bing.com/images/create/ https://designer.microsoft.com/image-creator Bing Image Creator - генератор изображений на базе DALL-E 3 от OpenAI, предоставленный компанией Microsoft. Designer - то же самое, но умеет делать широкоформатные и портретные изображения. Не доступны в России, используйте Proxy/VPN/Tor. ImageFX https://aitestkitchen.withgoogle.com/tools/image-fx Нейросеть для создания изображений от Google на основе их модели Imagen 2. На данный момент доступна только для пользователей из США, Кении, Новой Зеландии и Австралии, необходимо использовать Proxy или VPN с IP этих стран. Grok (X Image Generator) https://ximagegenerator.com/ Grok - ИИ, разработанный компанией xAI, принадлежащей Илону Маску. На данный момент имеет самую слабую цензуру. Flux https://fluxpro.art/ https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell https://huggingface.co/spaces/black-forest-labs/FLUX.1-dev Аналог Stable Diffusion от Black Forest Labs. Stable Diffusion и прочие https://civitai.com/generate https://getimg.ai/text-to-image https://www.mage.space/ https://problembo.com/ru https://deepai.org/machine-learning-model/text2img https://dezgo.com/ https://dream.ai/create https://www.krea.ai/ Здесь в основном различные онлайн-генераторы на базе Stable Diffusion, имеющие ограничения на количество бесплатных генераций в день или в месяц, можно обойти, создав несколько аккаунтов с разных почтовых ящиков. Временные почты для новых акков https://10minutemail.com https://fex.plus/ Дополнительные сервисы: https://www.pixited.com/ - библиотека промптов с примерами https://rentry.org/From-4ch-To-2ch-Dall-3-Prompts - сборник промптов https://www.stylar.ai - AI-редактор картинок (дорисовка, инпейнт, работа с лицами) https://astica.ai - сборник ИИ-сервисов, в частности довольно мощный де-промптер (Vision AI -> Describe and Caption) https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2 - де-промптер, разбирающий вброшенный пик на теги https://bigjpg.com/ - апскейлер до 4096х4096 https://runwayml.com/ , https://www.stablevideo.com - анимирование генераций Прошлый тред (последний /dalle/ тред), а также гайды для пользователей DALL-E можно найти здесь: >>764910 (OP)
19 августа 8:13
Сохранен
511
18 февраля 19:10
Сохранен
511
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №72 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды стонут здесь: >>825177 (OP) >>819978 (OP)
2 декабря 2024
Сохранен
511
Anime Diffusion #162 /nai/ — Генерируем тяночек! Прошлый тред: >>832282 (OP) https://arhivach.top/thread/1045435/ Схожие тематические треды • SD-тред (не аниме): >>839194 (OP) • Технотред: >>758561 (OP) Релиз Flux ✨ https://blog.fal.ai/flux-the-largest-open-sourced-text2img-model-now-available-on-fal Встречаем Flux - новую модель от бывших разработчиков Stable Diffusion. Модель доступна в трёх версиях: • schnell (distilled, быстрая генерация): https://huggingface.co/black-forest-labs/FLUX.1-schnell • dev: https://huggingface.co/black-forest-labs/FLUX.1-dev • pro: коммерческая модель, недоступна для скачивания https://comfyanonymous.github.io/ComfyUI_examples/flux/ В настоящий момент, Flux доступен для запуска только в последней версии ComfyUI. Комфортный минимум для запуска - карта с 16 GB VRAM в режиме fp8 и выгрузкой T5 на CPU. FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine/Pony) v1: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • 2vXpSwA7 (Animagine/Pony) v2: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet2 • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
5 декабря 2024
Сохранен
511
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №70 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>811392 (OP) >>804569 (OP)
20 ноября 2024
Сохранен
511
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №51 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1-GGUF/blob/main/Fimbulvetr-10.7B-v1.q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>699623 (OP) >>695332 (OP)
7 августа 2024
Сохранен
511
Stable Diffusion технотред #16 /tech/ — ИТТ делимся советами, лайфхаками, наблюдениями, результатами обучения, обсуждаем внутреннее устройство диффузионных моделей, собираем датасеты, решаем проблемы и экспериментируем Тред общенаправленныей, тренировка дедов, лупоглазых и фуррей приветствуются Предыдущий тред: >>570475 (OP) ➤ Софт для обучения https://github.com/kohya-ss/sd-scripts Набор скриптов для тренировки, используется под капотом в большей части готовых GUI и прочих скриптах. Для удобства запуска можно использовать дополнительные скрипты в целях передачи параметров, например: https://rentry.org/simple_kohya_ss ➤ GUI-обёртки для sd-scripts https://github.com/bmaltais/kohya_ss https://github.com/derrian-distro/LoRA_Easy_Training_Scripts https://github.com/anon-1337/LoRA-train-GUI ➤ Обучение SDXL https://2ch-ai.gitgud.site/wiki/tech/sdxl/ ➤ Гайды по обучению Существующую модель можно обучить симулировать определенный стиль или рисовать конкретного персонажа. ✱ LoRA – "Low Rank Adaptation" – подойдет для любых задач. Отличается малыми требованиями к VRAM (6 Гб+) и быстрым обучением. https://github.com/cloneofsimo/lora - изначальная имплементация алгоритма, пришедшая из мира архитектуры transformers, тренирует лишь attention слои, гайды по тренировкам: https://rentry.co/waavd - гайд по подготовке датасета и обучению LoRA для неофитов https://rentry.org/2chAI_hard_LoRA_guide - ещё один гайд по использованию и обучению LoRA https://rentry.org/59xed3 - более углубленный гайд по лорам, содержит много инфы для уже разбирающихся (англ.) ✱ LyCORIS (Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion) - проект по созданию алгоритмов для обучения дополнительных частей модели. Ранее имел название LoCon и предлагал лишь тренировку дополнительных conv слоёв. В настоящий момент включает в себя алгоритмы LoCon, LoHa, LoKr, DyLoRA, IA3, а так же на последних dev ветках возможность тренировки всех (или не всех, в зависимости от конфига) частей сети на выбранном ранге: https://github.com/KohakuBlueleaf/LyCORIS Подробнее про алгоритмы в вики https://2ch-ai.gitgud.site/wiki/tech/lycoris/ ✱ Dreambooth – для SD 1.5 обучение доступно начиная с 16 GB VRAM. Ни одна из потребительских карт не осилит тренировку будки для SDXL. Выдаёт отличные результаты. Генерирует полноразмерные модели: https://rentry.co/lycoris-and-lora-from-dreambooth (англ.) https://github.com/nitrosocke/dreambooth-training-guide (англ.) ✱ Текстуальная инверсия (Textual inversion), или же просто Embedding, может подойти, если сеть уже умеет рисовать что-то похожее, этот способ тренирует лишь текстовый энкодер модели, не затрагивая UNet: https://rentry.org/textard (англ.) ➤ Тренировка YOLO-моделей для ADetailer: YOLO-модели (You Only Look Once) могут быть обучены для поиска определённых объектов на изображении. В паре с ADetailer они могут быть использованы для автоматического инпеинта по найденной области. Подробнее в вики: https://2ch-ai.gitgud.site/wiki/tech/yolo/ Не забываем про золотое правило GIGO ("Garbage in, garbage out"): какой датасет, такой и результат. ➤ Гугл колабы ﹡Текстуальная инверсия: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb ﹡Dreambooth: https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb ﹡LoRA [1] https://colab.research.google.com/github/Linaqruf/kohya-trainer/blob/main/kohya-trainer.ipynb ﹡LoRA [2] https://colab.research.google.com/drive/1bFX0pZczeApeFadrz1AdOb5TDdet2U0Z ➤ Полезное Расширение для фикса CLIP модели, изменения её точности в один клик и более продвинутых вещей, по типу замены клипа на кастомный: https://github.com/arenasys/stable-diffusion-webui-model-toolkit Гайд по блок мерджингу: https://rentry.org/BlockMergeExplained (англ.) Гайд по ControlNet: https://stable-diffusion-art.com/controlnet (англ.) Подборка мокрописек для датасетов от анона: https://rentry.org/te3oh Группы тегов для бур: https://danbooru.donmai.us/wiki_pages/tag_groups (англ.) Гайды по апскейлу от анонов: https://rentry.org/SD_upscale https://rentry.org/sd__upscale https://rentry.org/2ch_nai_guide#апскейл https://rentry.org/UpscaleByControl Коллекция лор от анонов: https://rentry.org/2chAI_LoRA Гайды, эмбеды, хайпернетворки, лоры с форча: https://rentry.org/sdgoldmine https://rentry.org/sdg-link https://rentry.org/hdgfaq https://rentry.org/hdglorarepo https://gitgud.io/gayshit/makesomefuckingporn ➤ Legacy ссылки на устаревшие технологии и гайды с дополнительной информацией https://2ch-ai.gitgud.site/wiki/tech/legacy/ ➤ Прошлые треды https://2ch-ai.gitgud.site/wiki/tech/old_threads/ Шапка: https://2ch-ai.gitgud.site/wiki/tech/tech-shapka/
25 сентября 2024
Сохранен
511
NovelAI and WaifuDiffusion тред #128 /nai/ — Генерируем тяночек! Прошлый >>623249 (OP) https://arhivach.top/thread/976995/ Схожие тематические треды: — Технотред >>570475 (OP) — SD-тред (фотореализм) >>626761 (OP) — Тред в /fur/ https://2ch.hk/fur/res/284014.html Генерируя в коллабе на чужом блокноте будьте готовы к тому, что его автору могут отправляться все ваши промты, генерации, данные google-аккаунта, IP-адрес и фингерпринт браузера. F.A.Q. треда: https://rentry.co/nai_faq Устанавливаем на ПК/Облако: https://rentry.co/nai_faq#как-поставить-на-пкоблако Полезные расширения для WebUI: https://rentry.co/sd_automatic_extensions Гайды по промптам, списки тегов и негативных эмбеддингов: https://rentry.co/nai_faq#как-писать-промпты Как работать с ControlNet: https://stable-diffusion-art.com/controlnet Апскейл для начинающих: https://rentry.co/sd__upscale | https://rentry.co/SD_upscale | https://rentry.co/2ch_nai_guide#апскейл Апскейл с помощью ControlNet (для продвинутых, требуется минимум 8GB VRAM): https://rentry.co/UpscaleByControl Гайды по обучению лор: https://rentry.co/waavd | https://rentry.co/2chAI_hard_LoRA_guide Каталог популярных моделей: SD 1.5: https://civitai.com/collections/42742 SD XL: https://civitai.com/collections/42753 Каталог лор на стилизацию для SD 1.5: https://civitai.com/collections/42751 Прочие лоры с форча: https://huggingface.co/datasets/lazylora/gitgud-gayshit-raw/raw/main/gayshitbackup.txt Где искать модели, эмбединги, лоры, вайлдкарды и всё остальное: https://civitai.com | https://huggingface.co/models?other=stable-diffusion Оптимизации для слабых ПК (6GB VRAM и менее): https://rentry.co/voldy#-running-on-4gb-and-under- Общие советы по оптимизациям: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Optimizations АИ-галереи: https://aibooru.online | https://majinai.art Англоязычные каталоги ссылок: https://rentry.co/sdgoldmine | https://rentry.co/sdg-link Шаблон для переката: https://rentry.co/nwhci
22 мая 2024
Сохранен
511
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №29 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20B-GGUF/blob/main/MLewd-ReMM-L2-Chat-20B.q5_K_M.gguf Если совсем бомж и капчуешь с микроволновки, то можно взять https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF/blob/main/openhermes-2.5-mistral-7b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>550038 (OP) >>545044 (OP)
2 апреля 2024
Сохранен
511
ChatGPT-тред №14 /chatgpt/ — OpenAI - Error in Moderation Общаемся с самым продвинутым ИИ самой продвинутой текстовой моделью из доступных. Горим с доступа к свежевыпущенному новому поколению GPT-4. Гайд по регистрации из России: 1. Установи VPN, например расширение FreeVPN под свой любимый браузер и включи его. 2. Возьми нормальную почту. Адреса со многих сервисов временной почты блокируются. Отбитые могут использовать почту в RU зоне, она прекрасно работает. 3. Зайди на https://chat.openai.com/chat и начни регистрацию. Ссылку активации с почты запускай только со включенным VPN. 4. Когда попросят указать номер мобильного, пиздуй на sms-activate.org или 5sim.biz (дешевле) и в строку выбора услуг вбей openai. Для разового получения смс для регистрации тебе хватит индийского или польского номера за 7 - 10 рублей (проверено). Пользоваться Индонезией и странами под санкциями не рекомендуется. 5. Начинай пользоваться ChatGPT. 6. ??? 7. PROFIT! VPN не отключаем, все заходы осуществляем с ним. Соответствие страны VPN, почты и номера не обязательно, но желательно для тех, кому доступ критически нужен, например для работы. Для ленивых есть боты в телеге, 3 сорта: 0. Боты без истории сообщений. Каждое сообщение отправляется изолировано, диалог с ИИ невозможен, проёбывается 95% возможностей ИИ 1. Общая история на всех пользователей, говно даже хуже, чем выше 2. Приватная история на каждого пользователя, может реагировать на команды по изменению поведения и прочее. Говно, ибо платно, а бесплатный лимит или маленький, или его нет совсем. Промты для хорошего начала беседы для разных ситуаций https://github.com/f/awesome-chatgpt-prompts Перед тем, как идти в тред с горящей жопой при ошибках сервиса, сходи на сайт со статусом, может, это общий баг https://status.openai.com/ Чат помнит историю в пределах контекста, это 4к токенов для GPT 3.5 (до 16к в апи) и 8к для новой GPT-4 (128к в версии GPT-4-Turbo). Посчитать свои токены можно здесь: https://platform.openai.com/tokenizer Что может нейросеть: - писать тексты, выглядящие правдоподобно - решать некоторые простые задачки - писать код, который уже был написан Что не может нейросеть: - писать тексты, содержащие только истину - решать сложные задачи - писать сложный код - захватывать мир - заходить на вебсайты (неактуально для 4 с плагинами, платим деньги и радуемся) С последними обновлениями начинает всё чаще сопротивляться написанию NSFW историй и прочего запрещённого контента. Кумеры со всего мира в печали. На сегодняшний день (дата создания треда) есть бесплатная версия на основе GPT-3.5 и платная версия (20$/мес) с использованием следующего поколения — GPT-4. Платная версия ограничена 50 запросами в 3 часа, причем планируется увеличение ограничений. Доступ к плагинам открыли в бета-версии для платных пользователей. Оплатить подписку из России нельзя, ищите посредников на сайтах для оплаты онлайн игр и договаривайтесь там сами. Отважные могут попробовать разводил с авито, объявлений вагон, но аноны не проверяли. Для некоторых пользователей открыли альфа версию с бесплатной GPT-4 c картинками и веб-поиском, но счастливчиков в треде примерно 1 штука, остальные сидят на 3,5 и ноют. Прошлые треды тонут по адресам: >>489685 (OP) >>417034 (OP)
16 апреля 2024
Сохранен
511
9 апреля 2023
Сохранен
510
11 июля 22:29
Сохранен
510
3 марта 21:11
Сохранен
510
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №64 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ LLaMA 3 вышла! Увы, только в размерах 8B и 70B. Промты уже вшиты в новую таверну, так же последние версии кобольда и оригинальной ллама.цпп уже пофикшены. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>762583 (OP) >>758770 (OP)
9 октября 2024
Сохранен
510
Anime Diffusion #157 /nai/ — Генерируем тяночек! Прошлый тред: >>807546 (OP) https://arhivach.top/thread/1035792/ Схожие тематические треды • SD-тред (не аниме): >>810614 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine + Pony): https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
10 ноября 2024
Сохранен
510
11 января 19:44
Сохранен
510
ChatGPT-тред №13 /chatgpt/ — OpenAI API - Access Terminated Общаемся с самым продвинутым ИИ самой продвинутой текстовой моделью из доступных. Горим с доступа к свежевыпущенному новому поколению GPT-4. Гайд по регистрации из России: 1. Установи VPN, например расширение FreeVPN под свой любимый браузер и включи его. 2. Возьми нормальную почту. Адреса со многих сервисов временной почты блокируются. Отбитые могут использовать почту в RU зоне, она прекрасно работает. 3. Зайди на https://chat.openai.com/chat и начни регистрацию. Ссылку активации с почты запускай только со включенным VPN. 4. Когда попросят указать номер мобильного, пиздуй на sms-activate.org или 5sim.biz (дешевле) и в строку выбора услуг вбей openai. Для разового получения смс для регистрации тебе хватит индийского или польского номера за 7 - 10 рублей (проверено). Пользоваться Индонезией и странами под санкциями не рекомендуется. 5. Начинай пользоваться ChatGPT. 6. ??? 7. PROFIT! VPN не отключаем, все заходы осуществляем с ним. Соответствие страны VPN, почты и номера не обязательно, но желательно для тех, кому доступ критически нужен, например для работы. Для ленивых есть боты в телеге, 2 сорта: 1. Общая история на всех пользователей, говно 2. Приватная история на каждого пользователя, может реагировать на команды по изменению поведения и прочее. Говно, ибо платно, а бесплатный лимит или маленький, или его нет совсем. Промты для хорошего начала беседы для разных ситуаций https://github.com/f/awesome-chatgpt-prompts Перед тем, как идти в тред с горящей жопой при ошибках сервиса, сходи на сайт со статусом, может, это общий баг https://status.openai.com/ Чат помнит историю в пределах контекста, это 4к токенов для GPT 3.5 и 8к для новой GPT-4 (32к в перспективе). Посчитать свои токены можно здесь: https://platform.openai.com/tokenizer Что может нейросеть: - писать тексты, выглядящие правдоподобно - решать некоторые простые задачки - писать код, который уже был написан Что не может нейросеть: - писать тексты, содержащие только истину - решать сложные задачи - писать сложный код - захватывать мир - заходить на вебсайты (неактуально для 4 с плагинами, платим деньги и радуемся) С последним обновлением начинает всё чаще сопротивляться написанию NSFW историй и прочего запрещённого контента. Кумеры со всего мира в печали. На сегодняшний день (дата создания треда) есть бесплатная версия на основе GPT-3.5 и платная версия (20$/мес) с использованием следующего поколения — GPT-4. Платная версия ограничена 25 запросами в 3 часа, причем планируется увеличение ограничений. Доступ к плагинам открыли в бета-версии для платных пользователей. Оплатить подписку из России нельзя, ищите посредников на сайтах для оплаты онлайн игр и договаривайтесь там сами. Отважные могут попробовать разводил с авито, объявлений вагон, но аноны не проверяли. Прошлые треды тонут по адресам: >>417034 (OP) >>339644 (OP)
15 марта 2024
Сохранен
510
TTS тред #2 - Text To Speech /tts/ — Обсуждаем оффлайновые генераторы речи и делимся результатами, для чего сначала конвертируем аудио в видео. Что есть на сей день: Есть VITS-Umamusume-voice-synthesizer, только на японском, 87 голосов. ХагингФейс: https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer Гугл-Калаб: https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing MoeGoe и MoeTTS. Гайд на китайском: https://colab.research.google.com/drive/1HDV84t3N-yUEBXN8dDIDSv6CzEJykCLw#scrollTo=EuqAdkaS1BKl кажется итт можно тренировать свои голосовые модели, но это не точно Гугл-Калаб: https://www.bilibili.com/video/BV16G4y1B7Ey/?share_source=copy_web&vd_source=630b87174c967a898cae3765fba3bfa8 Они довольно лёгкие, если вам нужно на своём компьютере то, придётся накачать около 5 гигов + питон + гит, но всё будет установленно в одну папку поэтому будет легко удалить если надоест. Если используете несколько нейросетей - используйте Anaconda / Miniconda! Гайд: https://textbin.net/kfylbjdmz9 План Б: создаём речь в одном генераторе, и меняем голос через VITS, который можно натренировать на любой голос, в том числе свой, любимой матушки, обожаемого политика и других представителей социального дна. https://github.com/voicepaw/so-vits-svc-fork Чтобы создать видео из аудио, можно использовать FFMPEG, но если лень - есть GUI (по совместительству онлайн генератор речи, так что оффтоп в нашем треде) - https://dmkilab.com/soundworks - Tools \ Video \ Produce still video
31 декабря 2023
Сохранен
510
5 сентября 2023
Сохранен
510
17 мая 2023
Сохранен
510
10 апреля 2023