Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Сохранен
538
11 мая 16:09
Сохранен
538
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №93 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>954806 (OP) >>950457 (OP)
20 марта 17:12
Сохранен
537
Stable Diffusion Flux тред X+104 /sd/ — Stable Diffusion Flux тред X+104 ====================================== Предыдущий тред >>841179 (OP) https://arhivach.top/?tags=13840 ------------------------------------------ схожие тематические треды - аниме-тред >>841156 (OP) ======================== Stable Diffusion (SD) - открытая нейросеть генеративного искусства для создания картинок из текста/исходных картинок, обучения на своих изображениях. Flux — открытая нейросеть нового поколения для генерации изображений от стартапа Black Forest Labs, основанного беженцами бывшими разработчиками Stable Diffusion. Полный функционал в локальной установке (см. ниже) Пробный онлайн-генератор Stable Diffusion: https://dezgo.com/txt2img Пробный онлайн-генератор Flux: https://replicate.com/black-forest-labs/flux-dev Альтернативные онлайн-генераторы Flux: https://huggingface.co/black-forest-labs https://fluxpro.art/ ⚠️ Официальные модели stable diffusion от Stability AI значительно отстают по качеству от кастомных моделей (см. civitai ниже). ???? Без цензуры и полный функци_анал: только ПК-версия =========================================== ????УСТАНОВКА НА ПК WebUI от Automatic1111 https://teletype.in/@stablediffusion/PC_install_SD ------------------------------------------ ???? Для новичков - простой в работе WebUI Fooocus https://github.com/lllyasviel/Fooocus?tab=readme-ov-file#download ------------------------------------------ Портативная версия альтернативного WebUI от Comfy (запуск с одного из run.bat файлов) https://github.com/comfyanonymous/ComfyUI/releases Примерные workflow для ComfyUI (можно загружать напрямую из картинок) https://comfyanonymous.github.io/ComfyUI_examples/ ------------------------------------------ Для тех, у кого видеокарта не тянет - ускоренная генерация на ЦПУ https://github.com/rupeshs/fastsdcpu =========================================== ???? РАЗЛИЧНЫЕ МОДЕЛИ (И МНОГОЕ ДРУГОЕ) ???? https://civitai.com/ https://huggingface.co/ ------------------------------------------ ???? ПАРАМЕТРЫ И НАСТРОЙКИ ГЕНЕРАЦИИ ???? https://teletype.in/@stablediffusion/samplers_steps =========================================== ???? ГАЙД ПО СОСТАВЛЕНИЮ ЗАПРОСА, СТИЛИ https://teletype.in/@stablediffusion/artists_for_prompts Пример промпта (запроса) для sd1.5 или SDXL: an european girl, standing, high quality, soft focus, 8k, photograph by nick nichols Пример промпта (запроса) для Flux: This photo shows a small smiling young caucasian adult woman with blonde hair wearing a pink t-shirt with the words "SD3" and panties sitting on a white couch with her legs crossed in a yoga pose, in the background of the image behind the couch there a several standing large buff african american men wearing white t-shirts with the words "FLUX" and white shorts, they are staring at the blode young woman, the woman is very small in the image allowing the men to tower over her ------------------------------------------ ♾️РАЗЛИЧНЫЕ ХУДОЖЕСТВЕННЫЕ СТИЛИ (С ПРИМЕРАМИ) ???? https://supagruen.github.io/StableDiffusion-CheatSheet/ https://www.artvy.ai/styles ------------------------------------------ ????ЧТО ТАКОЕ CONTROLNET И КАК ЕГО ИСПОЛЬЗОВАТЬ https://dtf.ru/howto/1669307-ustanovka-i-obyasnenie-nastroek-control-net-kopirovanie-pozy-kompozicii-i-td ========================================== ???? ОБУЧЕНИЕ ПО СВОИМ КАРТИНКАМ ???? https://dtf.ru/howto/1660668-obuchenie-modeli-s-pomoshchyu-lora https://civitai.com/models/train
5 декабря 2024
Активный
536
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №149 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Базы треда не существует, каждый дрочит как он хочет. Базашизика дружно репортим. Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Заточенный под ExllamaV2 (а в будущем и под v3) и в консоли: https://github.com/theroyallab/tabbyAPI • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern • Альтернативный фронт: https://github.com/kwaroran/RisuAI Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/2ch_llm_2025 (версия 2024-го https://rentry.co/llm-models ) • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Перевод нейронками для таверны: https://rentry.co/magic-translation • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1280475 (OP) >>1277147 (OP)
8 августа 4:50
Сохранен
536
Stable Diffusion Flux тред X+129 /sd/ — Stable Diffusion Flux тред X+129 ====================================== Предыдущий тред >>945833 (OP) https://arhivach.top/?tags=13840 ------------------------------------------ схожий тематический тред - аниме-тред >>944600 (OP) ======================== Stable Diffusion (SD) - открытая нейросеть генеративного искусства для создания картинок из текста/исходных картинок, обучения на своих изображениях. Flux — открытая нейросеть нового поколения для генерации изображений от стартапа Black Forest Labs, основанного бывшими разработчиками Stable Diffusion. Полный функционал в локальной установке (см. ниже) Пробный онлайн-генератор Stable Diffusion: https://dezgo.com/txt2img Пробные онлайн-генераторы Flux: https://huggingface.co/black-forest-labs https://fluxpro.art/ ⚠️ Официальные модели stable diffusion от Stability AI значительно отстают по качеству от кастомных моделей (см. civitai ниже). ???? Без цензуры и полный функци_анал: только ПК-версия =========================================== ????УСТАНОВКА НА ПК Портативная версия основного WebUI от Comfy (запуск с одного из run.bat файлов) https://github.com/comfyanonymous/ComfyUI/releases Примерные workflow для ComfyUI (можно загружать напрямую из картинок) https://comfyanonymous.github.io/ComfyUI_examples/ ------------------------------------------ Альтернатива - еще поддерживаемый форк ранее популярного WebUI от Automatic1111 (R.I.P) https://github.com/lllyasviel/stable-diffusion-webui-forge?tab=readme-ov-file ------------------------------------------ ???? Для новичков - простой в работе WebUI Fooocus https://github.com/lllyasviel/Fooocus?tab=readme-ov-file#download ------------------------------------------ Для тех, у кого видеокарта не тянет - оптимизированная генерация на ЦПУ https://github.com/rupeshs/fastsdcpu =========================================== ???? РАЗЛИЧНЫЕ МОДЕЛИ (И МНОГОЕ ДРУГОЕ) ???? https://civitai.com/ https://huggingface.co/ ------------------------------------------ ???? ПАРАМЕТРЫ И НАСТРОЙКИ ГЕНЕРАЦИИ ???? https://teletype.in/@stablediffusion/samplers_steps =========================================== ???? ГАЙД ПО СОСТАВЛЕНИЮ ЗАПРОСА, СТИЛИ https://teletype.in/@stablediffusion/artists_for_prompts Пример промпта (запроса) для sd1.5 или SDXL: an european girl, standing, high quality, soft focus, 8k, photograph by nick nichols Пример промпта (запроса) для Flux: This photo shows a small smiling young caucasian adult woman with blonde hair wearing a pink t-shirt with the words "SD3" and panties sitting on a white couch with her legs crossed in a yoga pose, in the background of the image behind the couch there a several standing large buff african american men wearing white t-shirts with the words "FLUX" and white shorts, they are staring at the blode young woman, the woman is very small in the image allowing the men to tower over her ------------------------------------------ ♾️РАЗЛИЧНЫЕ ХУДОЖЕСТВЕННЫЕ СТИЛИ (С ПРИМЕРАМИ) ???? https://supagruen.github.io/StableDiffusion-CheatSheet/ https://www.artvy.ai/styles ------------------------------------------ ????ЧТО ТАКОЕ CONTROLNET И КАК ЕГО ИСПОЛЬЗОВАТЬ https://dtf.ru/howto/1669307-ustanovka-i-obyasnenie-nastroek-control-net-kopirovanie-pozy-kompozicii-i-td ========================================== ???? ОБУЧЕНИЕ ПО СВОИМ КАРТИНКАМ ???? https://dtf.ru/howto/1660668-obuchenie-modeli-s-pomoshchyu-lora https://civitai.com/models/train
7 марта 0:40
Сохранен
536
Anime Diffusion #155 /nai/ — Генерируем тяночек! Прошлый тред: >>798169 (OP) https://arhivach.top/thread/1031397/ Схожие тематические треды • SD-тред (не аниме): >>796811 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine + Pony): https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
1 ноября 2024
Сохранен
536
Голосовых нейронок тред (TTS, STS, STT) #3 /speech/ — Обсуждаем нейросети, связанные с синтезом, преобразованием и распознаванием речи. Не забываем публиковать свои шедевры в треде. Text To Speech (TTS) ???? ???? ???? Silero Российская разработка, легковесный, быстрый, относительно качественный. Поддерживает много языков, включая русский. https://github.com/snakers4/silero-models Есть 2 GUI: Для всех систем: https://huggingface.co/spaces/NeuroSenko/tts-silero Для винды, более продвинутый проект формата "всё в одном" (TTS/STS/TTS), часть функционала платная: SoundWorks, https://dmkilab.com/soundworks Официальный бот в телеге. Требуется подписка на новостной канал. На бесплатном тарифе есть лимиты на число запросов в сутки: https://t.me/silero_voice_bot Данная нейронка не обладает высокими системными требованиями. Если хотите запустить на своём компьютере, то, придётся накачать около 5 гигов + питон + гит, но всё будет установленно в одну папку поэтому будет легко удалить если надоест. Если используете несколько нейросетей - используйте Anaconda / Miniconda! Гайд: https://textbin.net/kfylbjdmz9 Нет возможности тренировки своих голосов, но возможно сделать генерацию с одним из имеющихся голосов, и потом преобразовать получившийся файл через STS (смотри ниже). Elevenlabs Онлайн-сервис синтеза и преобразования английского голоса. На бесплатном тарифе ограничения по числу символов в месяц. Сайт: https://elevenlabs.io/speech-synthesis Гайд по использованию и общие советы: https://rentry.org/AIVoiceStuff VITS-Umamusume-voice-synthesizer Только на японском, 87 голосов. ХагингФейс: https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer Гугл-Калаб: https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing MoeGoe и MoeTTS Гайд на китайском: https://colab.research.google.com/drive/1HDV84t3N-yUEBXN8dDIDSv6CzEJykCLw#scrollTo=EuqAdkaS1BKl Кажется можно тренировать свои голосовые модели, но это не точно Гугл-Калаб: https://www.bilibili.com/video/BV16G4y1B7Ey/?share_source=copy_web&vd_source=630b87174c967a898cae3765fba3bfa8 Speech To Speech (STS) ???? ???? ???? Оба проекта SVC и RVC позволяют обучать модели на любой голос, в том числе свой, любимой матушки, обожаемого политика и других представителей социального дна. Для обучения своих моделей нужен датасет от 10 минут до 1 часа. Разработчики софта рекомендуют для обучения использовать видеокарту с объёмом памяти 10 GB VRAM, но возможно обучение и на видеокартах с меньшим объёмом памяти. Преобразование голоса можно осуществлять как на видеокарте, так и на процессоре с меньшей скоростью. SoftVC VITS Singing Voice Conversion Fork (SVC) Репозиторий: https://github.com/voicepaw/so-vits-svc-fork Гайд по установке и использованию: https://rentry.org/tts_so_vits_svc_fork_for_beginners Готовые модели: https://huggingface.co/models?search=so-vits-svc | https://civitai.com/models?query=so-vits-svc Для изменения голоса в песнях вам дополнительно необходимо установить софт для отделения вокала от инструменталки: https://github.com/Anjok07/ultimatevocalremovergui Не поддерживает AMD GPU на Windows. Retrieval-based-Voice-Conversion-WebUI (RVC) Репозиторий: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI Готовые модели: https://huggingface.co/juuxn/RVCModels/tree/main Утилиты для отделения вокала от инструменталки идут в комплекте. Speech To Text (STT) ???? ???? ???? Консольная тулза от OpenAI, поддерживает множество языков, включая русский: https://github.com/openai/whisper Прочее ????️ Утилита для нарезки длинных аудиотреков (пригодится для составления датасетов): https://github.com/flutydeer/audio-slicer Чтобы создать видео из аудио, можно использовать FFMPEG, но если лень - есть GUI, SoundWorks (ссылку см. выше) - Tools \ Video \ Produce still video Ссылки на эти проекты мелькали в прошлых тредах, но не похоже на то, чтобы их активно использовали итт: https://github.com/w-okada/voice-changer/blob/master/README_en.md https://themetavoice.xyz/ https://github.com/coqui-ai/TTS Шаблон для переката: https://rentry.org/byv2s Предыдущий тред: >>314948 (OP)
13 февраля 2024
Сохранен
536
4 мая 2023
Активный
535
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №135 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный Не совсем актуальный список моделей с отзывами от тредовичков на конец 2024-го: https://rentry.co/llm-models • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ • Выгрузка избранных тензоров, позволяет ускорить генерацию при недостатке VRAM: https://www.reddit.com/r/LocalLLaMA/comments/1ki7tg7 Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1215508 (OP) >>1211347 (OP)
8 августа 4:50
Активный
535
8 августа 4:50
Сохранен
535
Локальные языковые модели (LLM): LLaMA, Gemma, DeepSeek и прочие №123 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, бугуртим с кривейшего тормозного говна и обоссываем калотарок. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный Не совсем актуальный список моделей с отзывами от тредовичков на конец 2024-го: https://rentry.co/llm-models • Неактуальный список моделей по состоянию на середину 2023-го: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Aleteian и https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по чуть менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/how-to-use-a-self-hosted-model/ • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1149538 (OP) >>1142778 (OP)
6 августа 14:23
Сохранен
535
Stable Diffusion Flux тред X+133 /sd/ — Stable Diffusion Flux тред X+133 ====================================== Предыдущий тред >>961683 (OP) https://arhivach.top/?tags=13840 ------------------------------------------ схожий тематический тред - аниме-тред >>962530 (OP) ======================== Stable Diffusion (SD) - открытая нейросеть генеративного искусства для создания картинок из текста/исходных картинок, обучения на своих изображениях. Flux — открытая нейросеть нового поколения для генерации изображений от стартапа Black Forest Labs, основанного бывшими разработчиками Stable Diffusion. Полный функционал в локальной установке (см. ниже) Пробный онлайн-генератор Stable Diffusion: https://dezgo.com/txt2img Пробные онлайн-генераторы Flux: https://huggingface.co/black-forest-labs https://fluxpro.art/ ⚠️ Официальные модели stable diffusion от Stability AI значительно отстают по качеству от кастомных моделей (см. civitai ниже). ???? Без цензуры и полный функци_анал: только ПК-версия =========================================== ????УСТАНОВКА НА ПК Портативная версия основного WebUI от Comfy (запуск с одного из run.bat файлов) https://github.com/comfyanonymous/ComfyUI/releases Примерные workflow для ComfyUI (можно загружать напрямую из картинок) https://comfyanonymous.github.io/ComfyUI_examples/ ------------------------------------------ Альтернатива - еще поддерживаемый форк ранее популярного WebUI от Automatic1111 (R.I.P) https://github.com/lllyasviel/stable-diffusion-webui-forge?tab=readme-ov-file ------------------------------------------ ???? Для новичков - простой в работе WebUI Fooocus https://github.com/lllyasviel/Fooocus?tab=readme-ov-file#download ------------------------------------------ Для тех, у кого видеокарта не тянет - оптимизированная генерация на ЦПУ https://github.com/rupeshs/fastsdcpu =========================================== ???? РАЗЛИЧНЫЕ МОДЕЛИ (И МНОГОЕ ДРУГОЕ) ???? https://civitai.com/ https://huggingface.co/ ------------------------------------------ ???? ПАРАМЕТРЫ И НАСТРОЙКИ ГЕНЕРАЦИИ ???? https://teletype.in/@stablediffusion/samplers_steps =========================================== ???? ГАЙД ПО СОСТАВЛЕНИЮ ЗАПРОСА, СТИЛИ https://teletype.in/@stablediffusion/artists_for_prompts Пример промпта (запроса) для sd1.5 или SDXL: an european girl, standing, high quality, soft focus, 8k, photograph by nick nichols Пример промпта (запроса) для Flux: This photo shows a small smiling young caucasian adult woman with blonde hair wearing a pink t-shirt with the words "SD3" and panties sitting on a white couch with her legs crossed in a yoga pose, in the background of the image behind the couch there a several standing large buff african american men wearing white t-shirts with the words "FLUX" and white shorts, they are staring at the blode young woman, the woman is very small in the image allowing the men to tower over her ------------------------------------------ ♾️РАЗЛИЧНЫЕ ХУДОЖЕСТВЕННЫЕ СТИЛИ (С ПРИМЕРАМИ) ???? https://supagruen.github.io/StableDiffusion-CheatSheet/ https://www.artvy.ai/styles ------------------------------------------ ????ЧТО ТАКОЕ CONTROLNET И КАК ЕГО ИСПОЛЬЗОВАТЬ https://dtf.ru/howto/1669307-ustanovka-i-obyasnenie-nastroek-control-net-kopirovanie-pozy-kompozicii-i-td ========================================== ???? ОБУЧЕНИЕ ПО СВОИМ КАРТИНКАМ ???? https://dtf.ru/howto/1660668-obuchenie-modeli-s-pomoshchyu-lora https://civitai.com/models/train
24 марта 22:53
Сохранен
535
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №48 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Основные форматы хранения весов это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1-GGUF/blob/main/Fimbulvetr-10.7B-v1.q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>683814 (OP) >>676400 (OP)
16 июля 2024
Сохранен
534
17 ноября 2023
Активный
533
сегодня 22:09
Сохранен
533
11 мая 16:10
Сохранен
533
1 апреля 2:35
Сохранен
533
NovelAI and WaifuDiffusion тред #123 /nai/ — Генерируем тяночек! Прошлый >>585503 (OP) https://arhivach.top/thread/968365/ Схожие тематические треды: — Технотред >>570475 (OP) — SD-тред (фотореализм) >>585202 (OP) — Тред в /fur/ https://2ch.hk/fur/res/284014.html Генерируя в коллабе на чужом блокноте будьте готовы к тому, что его автору могут отправляться все ваши промты, генерации, данные google-аккаунта, IP-адрес и фингерпринт браузера. F.A.Q. треда: https://rentry.co/nai_faq Устанавливаем на ПК/Облако: https://rentry.co/nai_faq#как-поставить-на-пкоблако Полезные расширения для WebUI: https://rentry.co/sd_automatic_extensions Гайды по промптам, списки тегов и негативных эмбеддингов: https://rentry.co/nai_faq#как-писать-промпты Как работать с ControlNet: https://stable-diffusion-art.com/controlnet Апскейл для начинающих: https://rentry.co/sd__upscale | https://rentry.co/SD_upscale | https://rentry.co/2ch_nai_guide#апскейл Апскейл с помощью ControlNet (для продвинутых, требуется минимум 8GB VRAM): https://rentry.co/UpscaleByControl Гайды по обучению лор: https://rentry.co/waavd | https://rentry.co/2chAI_hard_LoRA_guide Каталог популярных моделей: SD 1.5: https://civitai.com/collections/42742 SD XL: https://civitai.com/collections/42753 Каталог лор на стилизацию для SD 1.5: https://civitai.com/collections/42751 Прочие лоры с форча: https://huggingface.co/datasets/lazylora/gitgud-gayshit-raw/raw/main/gayshitbackup.txt Где искать модели, эмбединги, лоры, вайлдкарды и всё остальное: https://civitai.com | https://huggingface.co/models?other=stable-diffusion Оптимизации для слабых ПК (6GB VRAM и менее): https://rentry.co/voldy#-running-on-4gb-and-under- Общие советы по оптимизациям: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Optimizations АИ-галереи: https://aibooru.online | https://majinai.art Англоязычные каталоги ссылок: https://rentry.co/sdgoldmine | https://rentry.co/sdg-link Шаблон для переката: https://rentry.co/nwhci
30 апреля 2024
Сохранен
533
Stable Diffusion технотред #12 /tech/ — ИТТ делимся советами, лайфхаками, наблюдениями, результатами обучения, обсуждаем внутреннее устройство диффузионных моделей, собираем датасеты, решаем проблемы и экспериментируем Тред общенаправленныей, тренировка дедов, лупоглазых и фуррей приветствуются Предыдущий тред: >>399707 (OP) ➤ Софт для обучения https://github.com/kohya-ss/sd-scripts Набор скриптов для тренировки, используется под капотом в большей части готовых GUI и прочих скриптах. Для удобства запуска можно использовать дополнительные скрипты в целях передачи параметров, например: https://rentry.org/simple_kohya_ss ➤ GUI-обёртки для kohya-ss https://github.com/bmaltais/kohya_ss https://github.com/derrian-distro/LoRA_Easy_Training_Scripts https://github.com/anon-1337/LoRA-train-GUI ➤ Обучение SDXL Если вы используете скрипты https://github.com/kohya-ss/sd-scripts напрямую, то, для обучения SDXL, вам необходимо переключиться на ветку "sdxl" и обновить зависимости. Эта операция может привести к проблемам совместимости, так что, желательно, делать отдельную установку для обучения SDXL и использовать отдельную venv-среду. Скрипты для тренировки SDXL имеют в имени файла префикс sdxl_. Подробнее про обучение SDXL через kohya-ss можно почитать тут: https://github.com/kohya-ss/sd-scripts/tree/sdxl#about-sdxl-training Для GUI https://github.com/bmaltais/kohya_ss и https://github.com/derrian-distro/LoRA_Easy_Training_Scripts/tree/SDXL так же вышли обновления, позволяющее делать файнтьюны для SDXL. Кроме полноценного файнтьюна и обучения лор, для bmaltais/kohya_ss так же доступны пресеты для обучения LoRA/LoHa/LoKr, в том числе и для SDXL, требующие больше VRAM. Всё пока сырое и имеет проблемы с совместимостью, только для самых нетерпеливых. Требования к системе для обучения SDXL выше, чем для обучения SD 1.x. ➤ Гайды по обучению Существующую модель можно обучить симулировать определенный стиль или рисовать конкретного персонажа. ✱ Текстуальная инверсия (Textual inversion) может подойти, если сеть уже умеет рисовать что-то похожее: https://rentry.org/textard (англ.) ✱ Гиперсеть (Hypernetwork) может подойти, если она этого делать не умеет; позволяет добавить более существенные изменения в существующую модель, но тренируется медленнее: https://rentry.org/hypernetwork4dumdums (англ.) ✱ Dreambooth – выбор 24 Гб VRAM-бояр. Выдаёт отличные результаты. Генерирует полноразмерные модели: https://github.com/nitrosocke/dreambooth-training-guide (англ.) ✱ LoRA – "легковесный Dreambooth" – подойдет для любых задач. Отличается малыми требованиями к VRAM (6 Гб+) и быстрым обучением: https://rentry.org/2chAI_easy_LORA_guide - гайд по подготовке датасета и обучению LoRA для неофитов https://rentry.org/2chAI_LoRA_Dreambooth_guide - ещё один гайд по использованию и обучению LoRA https://rentry.org/59xed3 - более углубленный гайд по лорам, содержит много инфы для уже разбирающихся (англ.) ✱ LyCORIS (Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion) - это проект по созданию алгоритма для более эффективного дообучения SD. Ранее носил название LoCon. В настоящий момент включает в себя алгоритмы LoCon, LoHa, LoKr и DyLoRA: https://github.com/KohakuBlueleaf/LyCORIS ✱ LoCon (LoRA for Convolution layer) - тренирует дополнительные слои в UNet. Теоретически должен давать лучший результат тренировки по сравнению с LoRA, меньше вероятность перетренировки и большая вариативность при генерации. Тренируется примерно в два раза медленнее чистой LoRA, требует меньший параметр network_dim, поэтому размер выходного файла меньше. ✱ LoHa (LoRA with Hadamard Product representation) - тренировка с использованием алгоритма произведения Адамара. Теоретически должен давать лучший результат при тренировках с датасетом в котором будет и персонаж и стилистика одновременно. ✱ LoKr (LoRA with Kronecker product representation) - тренировка с использованием алгоритма произведения Кронекера. Алгоритм довольно чувствителен к learning_rate, так что требуется его тонкая подгонка. Из плюсов - очень маленький размер выходного файла (auto factor: 900~2500KB), из минусов - слабая переносимость между моделями. ✱ DyLoRA (Dynamic Search-Free LoRA) - по сути та же LoRA, только теперь в выходном файле размер ранга (network_dim) не фиксирован максимальным, а может принимать кратные промежуточные значения. После обучения на выходе будет один многоранговый файл модели, который можно разбить на отдельные одноранговые. Количество рангов указывается параметром --network_args "unit=x", т.е. допустим если network_dim=128, network_args "unit=4", то в выходном файле будут ранги 32,64,96,128. По заявлению разработчиков алгоритма, обучение одного многорангового файла в 4-7 раз быстрее, чем учить их по отдельности. ✱ Text-to-image fine-tuning для Nvidia A100/Tesla V100-бояр: https://keras.io/examples/generative/finetune_stable_diffusion (англ.) Не забываем про золотое правило GIGO ("Garbage in, garbage out"): какой датасет, такой и результат. ➤ Тренировка YOLO-моделей для ADetailer YOLO-модели (You Only Look Once) могут быть обучены для поиска определённых объектов на изображении. В паре с ADetailer они могут быть использованы для автоматического инпеинта по найденной области. Гайд: https://civitai.com/articles/1224/training-a-custom-adetailer-model Тулза для датасета: https://github.com/vietanhdev/anylabeling Больше про параметры: https://docs.ultralytics.com/modes/train ➤ Гугл колабы ﹡Текстуальная инверсия: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb ﹡Dreambooth: https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb ﹡LoRA [1] https://colab.research.google.com/github/Linaqruf/kohya-trainer/blob/main/kohya-trainer.ipynb ﹡LoRA [2] https://colab.research.google.com/drive/1bFX0pZczeApeFadrz1AdOb5TDdet2U0Z ➤ Полезное Гайд по фиксу сломанных моделей: https://rentry.org/clipfix (англ.) Расширение WebUI для проверки "сломаных" тензоров модели: https://github.com/iiiytn1k/sd-webui-check-tensors Гайд по блок мерджингу: https://rentry.org/BlockMergeExplained (англ.) Гайд по ControlNet: https://stable-diffusion-art.com/controlnet (англ.) Гайды по апскейлу от анонов: https://rentry.org/SD_upscale https://rentry.org/sd__upscale https://rentry.org/2ch_nai_guide#апскейл https://rentry.org/UpscaleByControl Ручная сборка и установка последней версии xformers и torch в venv автоматика: Windows: https://rentry.org/sd_performance Linux: https://rentry.org/SD_torch2_linux_guide Подборка мокрописек от анона: https://rentry.org/te3oh Группы тегов для бур: https://danbooru.donmai.us/wiki_pages/tag_groups (англ.) Коллекция лор от анонов: https://rentry.org/2chAI_LoRA Гайды, эмбеды, хайпернетворки, лоры с форча: https://rentry.org/sdgoldmine https://rentry.org/sdg-link https://rentry.org/hdgfaq https://rentry.org/hdglorarepo https://gitgud.io/gayshit/makesomefuckingporn Шапка: https://rentry.org/catb8 Прошлые треды: №1 https://arhivach.top/thread/859827/ №2 https://arhivach.top/thread/860317/ №3 https://arhivach.top/thread/861387/ №4 https://arhivach.top/thread/863252/ №5 https://arhivach.top/thread/863834/ №6 https://arhivach.top/thread/864377/ №7 https://arhivach.top/thread/868143/ №8 https://arhivach.top/thread/873010/ №9 https://arhivach.top/thread/878287/ №10 https://arhivach.top/thread/893334/ №11 https://arhivach.top/thread/908751/
7 марта 2024
Сохранен
533
9 апреля 2023
Сохранен
532
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №77 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>864092 (OP) >>854573 (OP)
4 января 10:08
Сохранен
532
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №62 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ LLaMA 3 вышла! Увы, только в размерах 8B и 70B. Промты уже вшиты в новую таверну, так же последние версии кобольда и оригинальной ллама.цпп уже пофикшены. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>751232 (OP) >>740739 (OP)
29 сентября 2024
Сохранен
532
Stable Diffusion тред X+62 /sd/ — Stable Diffusion тред X+62 ====================================== Предыдущий тред >>585202 (OP) https://arhivach.top/?tags=13840 ------------------------------------------ схожие тематические треды - технотред >>570475 (OP) - NAI-тред (аниме) >>588818 (OP) ======================== Stable Diffusion (SD) - открытая нейросеть генеративного искусства для создания картинок из текста/исходных картинок, обучения на своих изображениях. Полный функционал в локальной установке (см. ниже) Альтернативный онлайн-генератор №1: https://dezgo.com/txt2img Альтернативный онлайн-генератор №2: https://civitai.com/ (create после регистрации) Альтернативный онлайн-генератор №3: https://tensor.art/ (Workspace) ⚠️ Стандартные модели stable diffusion (v1.4 - v2.1) от Stability AI значительно отстают по качеству от кастомных моделей (см. ниже). Модели SD XL ставятся и запускаются так же как и любые другие модели SD. ???? Без цензуры и полный функци_анал: только ПК-версия =========================================== ????УСТАНОВКА НА ПК WebUI от Automatic1111 https://teletype.in/@stablediffusion/PC_install_SD ------------------------------------------ Портативная версия альтернативного WebUI от Comfy (запуск с одного из run.bat файлов) https://github.com/comfyanonymous/ComfyUI/releases Примерные workflow для ComfyUI (можно загружать напрямую из картинок) https://comfyanonymous.github.io/ComfyUI_examples/ =========================================== ???? РАЗЛИЧНЫЕ МОДЕЛИ (И МНОГОЕ ДРУГОЕ) ???? https://civitai.com/ ------------------------------------------ ???? ПАРАМЕТРЫ И НАСТРОЙКИ ГЕНЕРАЦИИ ???? https://teletype.in/@stablediffusion/samplers_steps =========================================== ???? ГАЙД ПО СОСТАВЛЕНИЮ ЗАПРОСА, СТИЛИ https://teletype.in/@stablediffusion/artists_for_prompts Пример запроса (Промпт): a tiger, wildlife photography, high quality, wildlife, soft focus, 8k, national geographic, photograph by nick nichols ------------------------------------------ ♾️РАЗЛИЧНЫЕ ХУДОЖЕСТВЕННЫЕ СТИЛИ (С ПРИМЕРАМИ) ???? https://supagruen.github.io/StableDiffusion-CheatSheet/ https://www.artvy.ai/styles ------------------------------------------ ????ЧТО ТАКОЕ CONTROLNET И КАК ЕГО ИСПОЛЬЗОВАТЬ https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion/ ========================================== ???? ОБУЧЕНИЕ МОДЕЛИ ПО СВОИМ КАРТИНКАМ ???? https://dtf.ru/howto/1660668-obuchenie-modeli-s-pomoshchyu-lora https://civitai.com/models/train
11 мая 2024
Сохранен
532
LLaMA тред №19 /llama/ — В этом треде обсуждаем семейство моделей от фейсбука под названием LLaMA, делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна, что сейчас наспех выпустили, а отладить забыли. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3, в которой 175B параметров (по утверждению самого фейсбука). Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. На данный момент развитие идёт в сторону увеличения контекста методом NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Так же террористы выпустили LLaMA 2, которая по тестам ебёт все файнтюны прошлой лламы и местами СhatGPT. Ждём выкладывания LLaMA 2 в размере 30B, которую мордолицые зажали. Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в случае Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас в полгига-гиг. Гайд для ретардов без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту https://huggingface.co/TheBloke/MythoMix-L2-13B-GGUF/blob/main/mythomix-l2-13b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/TavernAI/TavernAI (на выбор https://github.com/Cohee1207/SillyTavern , умеет больше, но заморочнее) 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах, есть поддержка видеокарт, но сделана не идеально, зато самый простой в запуске, инструкция по работе с ним выше. https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ. Самую большую скорость даёт ExLlama, на 7B можно получить литерали 100+ токенов в секунду. Вторая версия ExLlama ещё быстрее. Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://rentry.co/ayumi_erp_rating Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры Факультатив: https://rentry.co/Jarted Почитать, как трансгендеры пидарасы пытаются пиздить код белых господинов, но обсираются и получают заслуженную порцию мочи Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>499110 (OP) >>489141 (OP)
21 февраля 2024
Сохранен
532
Чирп №1 /music/ — AI генератор композиций прямо из текстаhttps://app.suno.ai генерация на сайтеhttps://suno.ai/discord генерация на официальном discord-сервереSuno представила свою новую модель текста в песню, Chirp v1. Эта модель способна генерировать музыку, включая вокал, на основе стиля и текста песни. Одним из наиболее значимых улучшений является возможность конвертации различных жанров, таких как рок, поп, K-pop, а также описаний типа “мелодичный” или “быстрый” в музыку. “Текст песни теперь можно разбить на части с помощью команд вроде [verse] и [chorus], что придает сгенерированным песням больше структуры.”Генерировать можно как просто описывая нужный стиль и суть(на русском генерирует с переменным успехом), либо через custom - полностью контролируя текст.Как получить от Суно законченную песню с нужной вам структурой:1. Старайтесь соблюдать размер в стихах. Если ваш текст сложно петь, получится речитатив независимо от жанра. Если вы сделаете в припеве и куплете разные размеры, то Суно будет проще придумать между ними переходы. Между соседними куплетами вставляйте пустую строку, получится пауза.2. Ударения в словах можно выделять большой буквой, вот так: "ПоросЯтам". Когда это не работает, измените само слово: вместо "прямЫ" напишите "примЫ". Иногда помогает разбить слово на две части, вместо "элЕктрогенератор" написать "элЕктро генерАтор".Есть мнение, что расстановка ударений большими буквами работает лучше, если не начинать предложения с больших букв.Ещё есть онла́йн се́рвисы по расстано́вке ударе́ний как в э́том предложе́нии, но хз, наско́лько хорошо́ суно э́то понима́ет.3. В круглых скобках можно добавлять бэк-вокал. Неплохо работают звуки типа (О-о-о, у-у-у-у).4. Размечайте песню тегами. Точно работают: [Verse], [Chorus], [Bridge], [Solo]. Русские тоже работают. К Соло иногда можно добавлять конкретику, например [Piano solo], но это может изменить инструменты всей песни. [Coda] помогает сделать концовку. С переменным успехом у меня работали [Calm] и [Aggressive]. Надо экспериментировать с другими тегами в квадратных скобках.5. Иногда можно кастомизировать жанр, добавляя слова типа Energetic, Rhythmic, Aggressive, Slow, Fast. Обязательно пишите With Female/Male vocals, чтобы избежать инструментала и указать пол певца (тоже не всегда срабатывает). Разработчики не рекомендуют смешивать разные жанры.6. Максимальный размер одной генерации 1:20. Когда вам понравился кусок, выбирайте меню с тремя точками и пункт "Continue fom this clip". В тексте оставьте только те строки, которые не влезли в прошлый фрагмент, и нажимайте Generate. Так можно делать несколько раз, например у вас может быть три-четыре таких последовательных фрагмента. В самом конце в меню выбирайте пункт "Get Whole Song" и песня склеится из всех фрагментов.К сожалению нельзя перегенерировать только кусок песни, поменяв что-то локально в тексте..7. Чтобы вручную нарезать трек из нагенеренного черновика и/или добавить свое видео используйте стороннее ПО или онлайн сервисы, например clipchamp8. Максимум бесплатных кредитов 50 в день, этого хватает на 5 генераций, в каждой генерации дается по два варианта трека. Кредиты не копятся, т.е. если скипнуть несколько дней, больше 50 все равно не будет. Если хочется больше, надо либо оформлять подписку за деньги, либо регать каждый раз новый аккаунт (при регистрации дается полторы сотни, емнип). При подписке также увеличивается количество вариантов трека.
11 июня 2024