Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Активный
503
сегодня 22:09
Активный
503
8 августа 4:50
Активный
503
ChatGPT-тред №19 /chatgpt/ — Общаемся с самым продвинутым ИИ самой продвинутой текстовой моделью из доступных. Горим с ограничений, лимитов и банов, генерим пикчи в стиле Studio Ghibli и обоссываем пользователей других нейросетей по мере возможности. Общение доступно на https://chatgpt.com/ , бесплатно без СМС и регистрации. Регистрация открывает функции создания изображений (может ограничиваться при высокой нагрузке), а подписка за $20 даёт доступ к новейшим моделям и продвинутым функциям. Бояре могут заплатить 200 баксов и получить персонального учёного (почти). Гайд по регистрации из России (устарел, нуждается в перепроверке): 1. Установи VPN, например расширение FreeVPN под свой любимый браузер и включи его. 2. Возьми нормальную почту. Адреса со многих сервисов временной почты блокируются. Отбитые могут использовать почту в RU зоне, она прекрасно работает. 3. Зайди на https://chatgpt.com/ и начни регистрацию. Ссылку активации с почты запускай только со включенным VPN. 4. Если попросят указать номер мобильного, пиздуй на sms-activate.org или 5sim.biz (дешевле) и в строку выбора услуг вбей openai. Для разового получения смс для регистрации тебе хватит индийского или польского номера за 7 - 10 рублей. Пользоваться Индонезией и странами под санкциями не рекомендуется. 5. Начинай пользоваться ChatGPT. 6. ??? 7. PROFIT! VPN не отключаем, все заходы осуществляем с ним. Соответствие страны VPN, почты и номера не обязательно, но желательно для тех, кому доступ критически нужен, например для работы. Для ленивых есть боты в телеге, 3 сорта: 0. Боты без истории сообщений. Каждое сообщение отправляется изолировано, диалог с ИИ невозможен, проёбывается 95% возможностей ИИ 1. Общая история на всех пользователей, говно даже хуже, чем выше 2. Приватная история на каждого пользователя, может реагировать на команды по изменению поведения и прочее. Говно, ибо платно, а бесплатный лимит или маленький, или его нет совсем. Промты для хорошего начала беседы для разных ситуаций https://github.com/f/awesome-chatgpt-prompts Перед тем, как идти в тред с горящей жопой при ошибках сервиса, сходи на сайт со статусом, может, это общий баг https://status.openai.com/ Приложение на андроид https://4pda.to/forum/index.php?showtopic=1073274 Чат помнит историю в пределах контекста, размер которого зависит от модели. Посчитать свои токены можно здесь: https://platform.openai.com/tokenizer Что может нейросеть: - писать тексты, выглядящие правдоподобно - решать некоторые простые задачки - писать код, который уже был написан Что не может нейросеть: - писать тексты, содержащие только истину - решать сложные задачи - писать сложный код - захватывать мир - заходить на вебсайты (неактуально для 4 с плагинами, платим деньги и радуемся) С последними обновлениями начинает всё чаще сопротивляться написанию NSFW историй и прочего запрещённого контента. Кумеры со всего мира в печали. Прошлый тред тонет по адресу: >>888915 (OP)
8 августа 4:50
Активный
503
Музыкальный общий №11 /music/ — ♫ Udio ♫ https://www.udio.com/ Вышла версия 1.5 Allegro, по функционалу то же, что и 1.5, только в два раза быстрее. Лимит 400 кредитов в месяц (или 200 генераций по 33 секунды каждая) при условии ежедневного захода на сайт - 100 кредитов даются в месяц, и еще 10 кредитов даются ежедневно. Также можно фармить кредиты, выполняя специальные задания по оцениванию качества рандомных треков, это дает не больше 10 дополнительных кредитов в день. Для большего числа кредитов и более продвинутых фич типа инпэйнтинга или генерации с загруженного аудио нужно платить. Появилась возможность генерировать треки по 2 минуты 11 секунд, не больше 3 длинных треков (по 2 версии на каждый трек) в день на бесплатном тарифе. ♫ Suno ♫ https://app.suno.ai/ генерация на сайте https://suno.ai/discord генерация на официальном discord-сервере https://rentry.co/suno_tips советы по использованию Лимиты: 10 генераций в день. Нужна платная подписка чтобы увеличить лимиты, либо можно абузить сервис через создание множества аккаунтов ♫ Riffusion ♫ https://www.riffusion.com/ Новинка, по качеству звука на уровне Суно или чуть выше. Лучший по качеству генератор текстов на русском. Количество генераций в день не ограничено, но за некоторые функции нужно платить (загрузку аудио, стемов и т.д.) https://www.riffusion.com/docs Инструкция по применению, тегам и прочему на английском. Локальные модели: Китайский YuE https://github.com/multimodal-art-projection/YuE Это буквально первый проект который может генерировать песни по заданному тексту локально. Оригинальная версия генерирует 30-секундный отрывок за 5 минут на 4090. На данный момент качество музыки низкое по сравнению с Суно. Еще сайты по генерации ИИ-музыки, в них тоже низкое качество звука и понимание промпта по сравнению с Суно, либо какие-то другие недостатки типа слишком долгого ожидания генерации или скудного набора жанров, но может кому-то зайдет, поэтому без описания: https://sonauto.ai/ https://www.beatoven.ai/ https://stableaudio.com/ https://www.loudly.com/music/ai-music-generator ______________ Напомню мега-сайт для сочинения аутентичных англоязычных текстов для ИИ-музыки в стиле известных групп и артистов от Пинк Флойда до Эминема. Зайти можно только через Дискорд. https://codyai.cc/ Прошлый тред >>1123903 (OP)
8 августа 4:50
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, DeepSeek и прочие №110 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Миксы от тредовичков с уклоном в русский РП: https://huggingface.co/Moraliane и https://huggingface.co/Aleteian • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ Архив тредов можно найти на архиваче: https://arhivach.hk/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>1054330 (OP) >>1050631 (OP)
11 мая 16:09
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №97 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Миксы от тредовичка с уклоном в русский РП: https://huggingface.co/Moraliane • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально: https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose: https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны: https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры: https://artefact2.github.io/llm-sampling/ Архив тредов можно найти на архиваче: https://arhivach.xyz/?tags=14780%2C14985 Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде. Предыдущие треды тонут здесь: >>979451 (OP) >>974181 (OP)
3 апреля 12:40
Сохранен
503
Музыкальный общий №8 /music/ — ♫ Udio ♫ https://www.udio.com/ Вышла версия 1.5. Лимит 400 кредитов в месяц (или 200 генераций по 33 секунды каждая) при условии ежедневного захода на сайт - 100 кредитов даются в месяц, и еще 10 кредитов даются ежедневно. Также можно фармить кредиты, выполняя специальные задания по оцениванию качества рандомных треков, это дает не больше 10 дополнительных кредитов в день. Для большего числа кредитов и более продвинутых фич типа инпэйнтинга или генерации с загруженного аудио нужно платить. Появилась возможность генерировать треки по 2 минуты 11 секунд, не больше 3 длинных треков (по 2 версии на каждый трек) в день на бесплатном тарифе. ♫ Suno ♫ https://app.suno.ai/ генерация на сайте https://suno.ai/discord генерация на официальном discord-сервере https://rentry.co/suno_tips советы по использованию https://www.suno.wiki вики Лимиты: 10 генераций в день. Нужна платная подписка чтобы увеличить лимиты, либо можно абузить сервис через создание множества аккаунтов ♫ Локальные модели ♫ Ждём и надеемся... Udio и Suno поддерживают множество языков для вокала (включая русский) и большое разнообразие жанров. Ориджинал контент крайне приветствуется. Прошлый тред: >>915015 (OP)
11 мая 16:09
Сохранен
503
26 марта 17:44
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №89 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны https://github.com/cierru/st-stepped-thinking • Потрогать, как работают семплеры https://artefact2.github.io/llm-sampling/ Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>933707 (OP) >>927265 (OP)
3 марта 21:11
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №86 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk • Пошаговое мышление от тредовичка для таверны https://github.com/cierru/st-stepped-thinking Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>917224 (OP) >>911638 (OP)
13 февраля 11:50
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №83 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>900425 (OP) >>895645 (OP)
27 января 21:01
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №75 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. В версии Llama 3.1 контекст наконец-то расширили до приличных 128к, теперь хватит всем! Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках подходящий пресет. Для модели из инструкции выше это Mistral 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://github.com/Mobile-Artificial-Intelligence/maid Запуск самой модели на телефоне https://github.com/Vali-98/ChatterUI Фронт для телефона https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>844088 (OP) >>834981 (OP)
21 декабря 2024
Сохранен
503
Anime Diffusion #163 /nai/ — Генерируем тяночек! Прошлый тред: >>841156 (OP) https://arhivach.top/thread/1046028/ Схожие тематические треды • SD-тред (не аниме): >>847486 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb • https://huggingface.co/black-forest-labs (Flux schnell/dev) • https://replicate.com/black-forest-labs/flux-schnell (Flux schnell) Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели Flux • schnell (distilled, быстрая генерация): https://huggingface.co/black-forest-labs/FLUX.1-schnell • dev: https://huggingface.co/black-forest-labs/FLUX.1-dev Запуск Flux на ComfyUI: https://comfyanonymous.github.io/ComfyUI_examples/flux/ Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine/Pony) v1: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • 2vXpSwA7 (Animagine/Pony) v2: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet2 • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
15 декабря 2024
Сохранен
503
Anime Diffusion #160 /nai/ — Генерируем тяночек! Прошлый тред: >>822972 (OP) https://arhivach.top/thread/1042289/ Схожие тематические треды • SD-тред (не аниме): >>826535 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine + Pony): https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
20 ноября 2024
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №54 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ LLaMA 3 вышла! Увы, только в размерах 8B и 70B. В треде можно поискать ссылки на правленные промт форматы, дефолтные не подходят. Ждём исправлений. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1-GGUF/blob/main/Fimbulvetr-10.7B-v1.q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama Однокнопочный инструмент для полных хлебушков в псевдо стиле Apple (никаких настроек, автор знает лучше) Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>712072 (OP) >>709757 (OP)
12 августа 2024
Сохранен
503
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №39 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/TheBloke/Frostwind-10.7B-v1-GGUF/blob/main/frostwind-10.7b-v1.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch (переезжаем на https://2ch-ai.gitgud.site/wiki/llama/ ), предложения принимаются в треде Предыдущие треды тонут здесь: >>616097 (OP) >>604568 (OP)
23 мая 2024
Сохранен
503
NovelAI and WaifuDiffusion тред #125 /nai/ — Генерируем тяночек! Прошлый >>593195 (OP) https://arhivach.top/thread/971677/ Схожие тематические треды: — Технотред >>570475 (OP) — SD-тред (фотореализм) >>592988 (OP) — Тред в /fur/ https://2ch.hk/fur/res/284014.html Генерируя в коллабе на чужом блокноте будьте готовы к тому, что его автору могут отправляться все ваши промты, генерации, данные google-аккаунта, IP-адрес и фингерпринт браузера. F.A.Q. треда: https://rentry.co/nai_faq Устанавливаем на ПК/Облако: https://rentry.co/nai_faq#как-поставить-на-пкоблако Полезные расширения для WebUI: https://rentry.co/sd_automatic_extensions Гайды по промптам, списки тегов и негативных эмбеддингов: https://rentry.co/nai_faq#как-писать-промпты Как работать с ControlNet: https://stable-diffusion-art.com/controlnet Апскейл для начинающих: https://rentry.co/sd__upscale | https://rentry.co/SD_upscale | https://rentry.co/2ch_nai_guide#апскейл Апскейл с помощью ControlNet (для продвинутых, требуется минимум 8GB VRAM): https://rentry.co/UpscaleByControl Гайды по обучению лор: https://rentry.co/waavd | https://rentry.co/2chAI_hard_LoRA_guide Каталог популярных моделей: SD 1.5: https://civitai.com/collections/42742 SD XL: https://civitai.com/collections/42753 Каталог лор на стилизацию для SD 1.5: https://civitai.com/collections/42751 Прочие лоры с форча: https://huggingface.co/datasets/lazylora/gitgud-gayshit-raw/raw/main/gayshitbackup.txt Где искать модели, эмбединги, лоры, вайлдкарды и всё остальное: https://civitai.com | https://huggingface.co/models?other=stable-diffusion Оптимизации для слабых ПК (6GB VRAM и менее): https://rentry.co/voldy#-running-on-4gb-and-under- Общие советы по оптимизациям: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Optimizations АИ-галереи: https://aibooru.online | https://majinai.art Англоязычные каталоги ссылок: https://rentry.co/sdgoldmine | https://rentry.co/sdg-link Шаблон для переката: https://rentry.co/nwhci
12 мая 2024
Сохранен
503
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №28 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20B-GGUF/blob/main/MLewd-ReMM-L2-Chat-20B.q5_K_M.gguf Если совсем бомж и капчуешь с микроволновки, то можно взять https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF/blob/main/openhermes-2.5-mistral-7b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>545044 (OP) >>542483 (OP)
2 апреля 2024
Сохранен
503
LLaMA тред №18 /llama/ — В этом треде обсуждаем семейство моделей от фейсбука под названием LLaMA, делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна, что сейчас наспех выпустили, а отладить забыли. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3, в которой 175B параметров (по утверждению самого фейсбука). Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. На данный момент развитие идёт в сторону увеличения контекста методом NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Так же террористы выпустили LLaMA 2, которая по тестам ебёт все файнтюны прошлой лламы и местами СhatGPT. Ждём выкладывания LLaMA 2 в размере 30B, которую мордолицые зажали. Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в случае Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас в полгига-гиг. Гайд для ретардов без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту https://huggingface.co/TheBloke/MythoMix-L2-13B-GGUF/blob/main/mythomix-l2-13b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/TavernAI/TavernAI (на выбор https://github.com/Cohee1207/SillyTavern , умеет больше, но заморочнее) 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах, есть поддержка видеокарт, но сделана не идеально, зато самый простой в запуске, инструкция по работе с ним выше. https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ. Самую большую скорость даёт ExLlama, на 7B можно получить литерали 100+ токенов в секунду. Вторая версия ExLlama ещё быстрее. Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://rentry.co/ayumi_erp_rating Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры Факультатив: https://rentry.co/Jarted Почитать, как трансгендеры пидарасы пытаются пиздить код белых господинов, но обсираются и получают заслуженную порцию мочи Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>472695 (OP) >>489141 (OP)
13 февраля 2024
Сохранен
503
LLaMA тред №15 /llama/ — В этом треде обсуждаем семейство моделей от фейсбука под названием LLaMA, делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна, что сейчас наспех выпустили, а отладить забыли. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3, в которой 175B параметров (по утверждению самого фейсбука). Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. На данный момент развитие идёт в сторону увеличения контекста методом NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Так же террористы выпустили LLaMA 2, которая по тестам ебёт все файнтюны прошлой лламы и местами СhatGPT. Ждём выкладывания LLaMA 2 в размере 30B, которую мордолицые зажали. Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0.bin. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в случае Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит, квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Гайд для ретардов без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в ggml формате. Например вот эту https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML/blob/main/WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_1.bin Можно просто вбить в huggingace в поиске "ggml" и скачать любую, охуеть, да? Главное, скачай файл с расширением .bin, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/TavernAI/TavernAI (на выбор https://github.com/Cohee1207/SillyTavern , умеет больше, но заморочнее) 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах, есть поддержка видеокарт, но сделана не идеально, зато самый простой в запуске, инструкция по работе с ним выше. https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ. Самую большую скорость даёт ExLlama, на 7B можно получить литерали 100+ токенов в секунду. Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.org/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.org/STAI-Termux Запуск SillyTavern на телефоне https://rentry.org/lmg_models Самый полный список годных моделей https://rentry.co/ayumi_erp_rating Рейтинг моделей для кума со спорной методикой тестирования https://rentry.org/llm-training Гайд по обучению своей лоры Факультатив: https://rentry.org/Jarted Почитать, как трансгендеры пидарасы пытаются пиздить код белых господинов, но обсираются и получают заслуженную порцию мочи Предыдущие треды тонут здесь: >>438203 (OP) >>426362 (OP)
9 января 2024
Сохранен
503
7 апреля 2023
Сохранен
502
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №33 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20B-GGUF/blob/main/MLewd-ReMM-L2-Chat-20B.q5_K_M.gguf Если совсем бомж и капчуешь с микроволновки, то можно взять https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF/blob/main/openhermes-2.5-mistral-7b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/xzuen Гайд для запуска на видеокарте на русском Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>573687 (OP) >>567655 (OP)
26 апреля 2024
Сохранен
502
LLaMA тред №16 /llama/ — В этом треде обсуждаем семейство моделей от фейсбука под названием LLaMA, делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна, что сейчас наспех выпустили, а отладить забыли. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3, в которой 175B параметров (по утверждению самого фейсбука). Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. На данный момент развитие идёт в сторону увеличения контекста методом NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Так же террористы выпустили LLaMA 2, которая по тестам ебёт все файнтюны прошлой лламы и местами СhatGPT. Ждём выкладывания LLaMA 2 в размере 30B, которую мордолицые зажали. Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0.bin. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в случае Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит, квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Гайд для ретардов без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в ggml формате. Например вот эту https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML/blob/main/WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_1.bin Можно просто вбить в huggingace в поиске "ggml" и скачать любую, охуеть, да? Главное, скачай файл с расширением .bin, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/TavernAI/TavernAI (на выбор https://github.com/Cohee1207/SillyTavern , умеет больше, но заморочнее) 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах, есть поддержка видеокарт, но сделана не идеально, зато самый простой в запуске, инструкция по работе с ним выше. https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ. Самую большую скорость даёт ExLlama, на 7B можно получить литерали 100+ токенов в секунду. Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.org/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.org/STAI-Termux Запуск SillyTavern на телефоне https://rentry.org/lmg_models Самый полный список годных моделей https://rentry.co/ayumi_erp_rating Рейтинг моделей для кума со спорной методикой тестирования https://rentry.org/llm-training Гайд по обучению своей лоры Факультатив: https://rentry.org/Jarted Почитать, как трансгендеры пидарасы пытаются пиздить код белых господинов, но обсираются и получают заслуженную порцию мочи Шапка треда находится в https://rentry.org/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>457355 (OP) >>438203 (OP)
20 января 2024
Сохранен
502
Исследования ИИ тред #1 /research/ — Исследования ИИ тред #1Обсуждаем развитие искусственного интеллекта с более технической стороны, чем обычно. Я ничего не понимаю, что делать?Без петросянства: смотри программу стэнфорда CS229, CS231n https://see.stanford.edu/Course/CS229 (классика) и http://cs231n.stanford.edu/ (введение в нейроночки) и изучай, если не понятно - смотри курсы prerequisites и изучай их. Как именно ты изучишь конкретные пункты, типа линейной алгебры - дело твое, есть книги, курсы, видосики, ссылки смотри ниже. Где узнать последние новости?https://www.reddit.com/r/MachineLearning/http://www.datatau.com/https://twitter.com/ylecun На реддите также есть хороший FAQ для вкатывающихся Какая математика используется?В основном линейная алгебра, теорвер, матстат, базовый матан и matrix calculus Как работает градиентный спуск?https://cs231n.github.io/optimization-2/ Почему python?Исторически сложилось. Поэтому давай, иди и перечитывай Dive into Python Можно не python?Никого не волнует, где именно ты натренируешь свою гениальную модель. Но при серьезной работе придется изучать то, что выкладывают другие, а это будет, скорее всего, python, если работа последних лет Что почитать для вкатывания?http://www.deeplearningbook.org/Николенко "Глубокое обучение" — на русском, есть примеры, но меньше охват материалаФрансуа Шолле — Глубокое обучение на Pythonhttps://d2l.ai/index.htmlВсе книги и статьи фактически устаревают за год. В чем практиковаться нубу?http://deeplearning.stanford.edu/tutorial/https://www.hackerrank.com/domains/aihttps://github.com/pytorch/exampleshttps://github.com/ChristosChristofidis/awesome-deep-learning#tutorials Где набрать первый самостоятельный опыт? https://www.kaggle.com/ | http://mltrainings.ru/ Стоит отметить, что спортивный deep learning отличается от работы примерно так же, как олимпиадное программирование от настоящего. За полпроцента точности в бизнесе борятся редко, а в случае проблем нанимают больше макак для разметки датасетов. На кагле ты будешь вилкой чистить свой датасет, чтобы на 0,1% обогнать конкурента. Где работать? https://www.indeed.com/q-deep-learning-jobs.html Вкатывальщики могут устроиться программистами и дальше попроситься в ML-отдел Есть ли фриланс в машобе? Есть, https://www.upwork.com/search/jobs/?q=machine+learning Но прожить только фриланся сложно, разве что постоянного клиента найти, а для этого нужно не быть тобой Где посмотреть последние статьи? http://www.arxiv-sanity.com/ https://paperswithcode.com/ https://openreview.net/ Версии для зумеров (Килхер): https://www.youtube.com/channel/UCZHmQk67mSJgfCCTn7xBfew Количество статей зашкваливающее, поэтому все читают только свою узкую тему и хайповые статьи, упоминаемые в блогах, твиттере, ютубе и телеграме, топы NIPS и прочий хайп. Есть блоги, где кратко пересказывают статьи, даже на русском Где посмотреть must read статьи? https://github.com/ChristosChristofidis/awesome-deep-learning#papers https://huggingface.co/transformers/index.html То, что обозревает Килхер тоже зачастую must read Где ещё можно поговорить про анализ данных? http://ods.ai/ Нужно ли покупать видеокарту/дорогой пека? Если хочешь просто пощупать нейроночки или сделать курсовую, то можно обойтись облаком. Google Colab дает бесплатно аналог GPU среднего ценового уровня на несколько часов с возможностью продления, при чем этот "средний уровень" постоянно растет. Некоторым достается даже V100. Иначе выгоднее вложиться в GPU https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/ Заодно в майнкрафт на топовых настройках погоняешь Когда уже изобретут AI и он нас всех поработит? На текущем железе — никогда, тред не об этом Кто-нибудь использовал машоб для трейдинга? Огромное количество ордеров как в крипте так и на фонде выставляются ботами: оценщиками-игральщиками, перекупщиками, срезальщиками, арбитражниками. Часть из них оснащена тем или иным ML. Даже на швабре есть пара статей об угадывании цены. Тащем-то пруф оф ворк для фонды показывали ещё 15 лет назад. Так-что бери Tensorflow + Reinforcement Learning и иди делать очередного бота: не забудь про стоп-лоссы и прочий риск-менеджмент, братишка Список дедовских книг для серьёзных людей: Trevor Hastie et al. "The Elements of Statistical Learning" Vladimir N. Vapnik "The Nature of Statistical Learning Theory" Christopher M. Bishop "Pattern Recognition and Machine Learning" Взять можно тут: https://www.libgen.is/ Напоминание ньюфагам: немодифицированные персептроны и прочий мусор середины прошлого века действительно не работают на серьёзных задачах. Disclaimer: Шапка сгенерирована нейросетью и нуждается в чистке.
18 февраля 2024
Сохранен
502
10 мая 2023