Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Сохранен
1548
AI Chatbot General № 383 /aicg/ — AI Chatbot General № 383 Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/ClaudForAgnai | https://rentry.co/Aicg4Retards (Гайд на английском) https://github.com/SillyLossy/TavernAI | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 4: https://rentry.co/SillyTavern_JB_Pack | https://dumb.one/gpt/prompts-scraped/ Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://web.archive.org/web/20230712205352/https://rentry.org/HochiTurboTips#prompt-sets - Claude - https://github.com/Barbariskaa/Spermack https://github.com/PandarusAnon/slaude https://github.com/bfs15/slaude https://rentry.co/spermflow Джейлы: https://rentry.co/ClaudeJB | https://rentry.co/absolutejail | https://rentry.co/fumblebum | https://rentry.co/pitanonbots#claude-rp-prompts | https://rentry.co/XML-dva-shiza Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff - Bing - https://github.com/Barbariskaa/Biba - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://avakson.github.io/character-editor/ https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/tai-bots - Село 2ch - https://rentry.co/selo2ch - Архив тредов- https://rentry.co/paxi32 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Список прокси: https://navigatethecoom.github.io/navigate | Ctrl + F ".hf" Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Шапка - https://rentry.co/shapkacaitreda - LLaMA thread: >>457355 (OP) - - PygmalionAI thread: >>359618 (OP) - - Прошлый тред: >>457923 (OP) -
31 декабря 2023
Сохранен
1515
AI Chatbot General № 593 /aicg/ — AI Chatbot General № 593 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Новости • gemini-2.0-flash-thinking-exp-1219 вышла на Gemini API - https://ai.google.dev/gemini-api/docs/models/experimental-models • OpenAI o1 на API для tier-5 пользователей - https://x.com/OpenAIDevs/status/1869156065788715409 Большие фронтенды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Малые фронтенды • Adventure-UI: https://rentry.co/CYOA_AdventureUI Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs • Grok: https://docs.x.ai/docs • Mistral: https://docs.mistral.ai/api/ Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.org/2chaicgtavernbots | https://rentry.org/2chaicgtavernbots2 | https://rentry.org/2chaicgtavernbots3 • Бургерские боты: https://rentry.org/meta_bot_list Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.org/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.org/2chaicgthemedevents • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>990008 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg Прошлый тред: >>992753 (OP)
5 апреля 7:58
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №75 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. В версии Llama 3.1 контекст наконец-то расширили до приличных 128к, теперь хватит всем! Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках подходящий пресет. Для модели из инструкции выше это Mistral 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://github.com/Mobile-Artificial-Intelligence/maid Запуск самой модели на телефоне https://github.com/Vali-98/ChatterUI Фронт для телефона https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>844088 (OP) >>834981 (OP)
21 декабря 2024
Сохранен
1027
29 сентября 2023
Сохранен
521
ИИ-видео общий №5 /video/ — Генерируем свое (и постим чужое) в Hunyuan, Wan, Luma Dream Machine, Hailuo Minimax, Kling, Sora, Vidu, Runway, Pixverse, Pika и др. сервисах. 1. Hailuo Minimax https://hailuoai.video/ 2. Kling https://klingai.com/ 3. Sora от OpenAi https://openai.com/sora/ 4. Luma Dream Machine https://lumalabs.ai/ 5. Vidu https://www.vidu.com/create 6. Pixverse https://app.pixverse.ai/ 7. Pika https://pika.art/try 8. Runway Gen. 3 https://runwayml.com/ 9. Wan от Alibaba https://chat.qwen.ai/ https://wanx-ai.net/ru/models/wanx Сайты, где можно попробовать генерации на разных моделях https://pollo.ai/ https://nim.video/ Коллекция ИИ-видео: https://www.reddit.com/r/aivideo/ Локальные модели 1. Hunyuan от Tencent. https://hunyuanvideoai.com/ https://github.com/Tencent/HunyuanVideo 2. Wan от Alibaba https://github.com/Wan-Video/Wan2.1 Локальный UI https://github.com/comfyanonymous/ComfyUI Установка локальных моделей Hunyuan Video: https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/ Wan 2.1: https://comfyanonymous.github.io/ComfyUI_examples/wan/ Альтернативные ноды ComfyUI Hunyuan Video: https://github.com/kijai/ComfyUI-HunyuanVideoWrapper Wan 2.1: https://github.com/kijai/ComfyUI-WanVideoWrapper Квантованные чекпоинты Hunyuan Video (GGUF): https://huggingface.co/Kijai/SkyReels-V1-Hunyuan_comfy/tree/main Wan 2.1 (GGUF): https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/tree/main Wan 2.1 (NF4): https://civitai.com/models/1299436?modelVersionId=1466629 Где брать готовые LoRA https://civitai.com/models Hunyuan Video: https://civitai.com/search/models?baseModel=Hunyuan%20Video&sortBy=models_v9 Wan 2.1: https://civitai.com/search/models?baseModel=Wan%20Video&sortBy=models_v9 Обучение LoRA https://github.com/tdrussell/diffusion-pipe Предыдущий тред >>1015622 (OP)
1 июля 1:43
Сохранен
549
Anime Diffusion #164 /nai/ — Генерируем тяночек! Прошлый тред: >>849389 (OP) https://arhivach.top/thread/1051311/ Схожие тематические треды • SD-тред (не аниме): >>856575 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb • https://huggingface.co/black-forest-labs (Flux schnell/dev) • https://replicate.com/black-forest-labs/flux-schnell (Flux schnell) Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Модели Flux • dev: https://huggingface.co/black-forest-labs/FLUX.1-dev • schnell: https://huggingface.co/black-forest-labs/FLUX.1-schnell Поддержка Flux ✅ Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981 ✅ ComfyUI: https://comfyanonymous.github.io/ComfyUI_examples/flux ❌ AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16311 (пока нет поддержки) ❌ reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge/issues/122 (автор работает над реализацией) ❌ Fooocus: https://github.com/lllyasviel/Fooocus/issues/3424 (поддержки нет и не планируется) Тренировка лор для Flux • sd-scripts: https://github.com/kohya-ss/sd-scripts/tree/sd3?tab=readme-ov-file#flux1-lora-training-wip (ветка sd3) • SimpleTuner: https://github.com/bghira/SimpleTuner/blob/main/documentation/quickstart/FLUX.md Модели SDXL • Pony Diffusion: https://civitai.com/models/257749/pony-diffusion-v6-xl • AutismMix: https://civitai.com/models/288584/autismmix-sdxl • Animagine: https://civitai.com/models/260267 Модели SD 1.5 • Старый каталог: https://civitai.com/collections/42742 • EasyFluff+hll: https://rentry.org/5exa3 Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion ControlNet-модели для SDXL • 2vXpSwA7 (Animagine/Pony) v1: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet • 2vXpSwA7 (Animagine/Pony) v2: https://huggingface.co/2vXpSwA7/iroiro-lora/tree/main/test_controlnet2 • Mistoline (Animagine): https://civitai.com/models/441432/mistoline • kataragi (Animagine): https://huggingface.co/kataragi ControlNet-модели для SD 1.5 • ControlNet 1.1: https://civitai.com/models/38784 • QR Code Monster: https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Лоры с форча • Pony Diffusion: https://rentry.org/ponyxl_loras_n_stuff • SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
21 декабря 2024
Сохранен
504
NovelAI and WaifuDiffusion тред #147 /nai/ — Генерируем тяночек! Прошлый >>744224 (OP) https://arhivach.top/thread/1016846/ Схожие тематические треды: — Технотред >>639060 (OP) — SD-тред (фотореализм) >>752950 (OP) — Тред в /fur/ https://2ch.hk/fur/res/284014.html Генерируя в коллабе на чужом блокноте будьте готовы к тому, что его автору могут отправляться все ваши промты, генерации, данные google-аккаунта, IP-адрес и фингерпринт браузера. F.A.Q. треда: https://rentry.co/nai_faq Устанавливаем на ПК/Облако: https://rentry.co/nai_faq#как-поставить-на-пкоблако Полезные расширения для WebUI: https://rentry.co/sd_automatic_extensions ➤ Гайды Гайды по промптам, списки тегов и негативных эмбеддингов: https://rentry.co/nai_faq#как-писать-промпты ControlNet для начинающих: https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion Полная инфа по ControlNet: https://stable-diffusion-art.com/controlnet Апскейл для начинающих: https://rentry.co/sd__upscale | https://rentry.co/SD_upscale | https://rentry.co/2ch_nai_guide#апскейл Апскейл с помощью ControlNet (для продвинутых, требуется минимум 8GB VRAM): https://rentry.co/UpscaleByControl Гайды по обучению лор: https://rentry.co/waavd | https://rentry.co/2chAI_hard_LoRA_guide ➤ Интерфейсы для Stable Diffusion Stable Diffusion WebUI by AUTOMATIC1111 https://github.com/AUTOMATIC1111/stable-diffusion-webui Классический WebUI от AUTOMATIC1111. Самое большое число пользователей и наработок. Оптимизации для слабых ПК (6GB VRAM и менее): https://rentry.co/voldy#-running-on-4gb-and-under- Общие советы по оптимизациям: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Optimizations ComfyUI https://github.com/comfyanonymous/ComfyUI Интерфейс, заточенный на построение собственных workflow посредством организации конвееров через редактирование нод с различными действиями и указанием связей между ними. Англоязычный гайд от автора в виде визуальный новеллы: https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ Примеры готовых workflow: https://comfyanonymous.github.io/ComfyUI_examples/ Русскоязычный гайд: https://habr.com/ru/articles/729848/ WebUI Forge https://github.com/lllyasviel/stable-diffusion-webui-forge WebUI от автора контролнета. По интерфейсу аналогичен WebUI от автоматика, но более быстрый. Foocus https://github.com/lllyasviel/Fooocus Альтернативный WebUI от автора контролнета, ориентированный на простоту использования. Доступен в облаке гугла (колаб): https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb ➤ Каталог популярных моделей Чекпоинты SD 1.5: https://civitai.com/collections/42742 Чекпоинты SD XL: https://civitai.com/collections/42753 Генерация аниме на EasyFluff + hll-ликорисе: https://rentry.org/5exa3 Каталог лор на стилизацию для SD 1.5: https://civitai.com/collections/42751 Лоры с форча для SD 1.5: https://gitgud.io/badhands/makesomefuckingporn Лоры и примечания для PonyDiffusion: https://rentry.org/ponyxl_loras_n_stuff ➤ Дополнительная инфа Где искать модели, эмбединги, лоры, вайлдкарды и всё остальное: https://civitai.com | https://huggingface.co/models?other=stable-diffusion АИ-галереи: https://aibooru.online | https://majinai.art Англоязычные каталоги ссылок: https://stable-diffusion-art.com/tutorials | https://rentry.co/sdg-link | https://rentry.co/sdgoldmine Шаблон для переката: https://rentry.co/nwhci
29 сентября 2024
Сохранен
1598
AI Chatbot General № 474 /aicg/ — AI Chatbot General № 474 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/Tavern4Retards (Гайд на английском) | https://rentry.org/STAI-Termux (На андроид) Базовые термины: https://2ch-ai.gitgud.site/wiki/llama/ Скрипты SillyTavern (Quick Replies): https://rentry.org/stscript https://github.com/SillyTavern/SillyTavern | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 0314/0613: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/fa5fv | https://dumb.one/gpt/prompts-scraped/ | https://rentry.co/lobstersgpt Джейлы на 1106: https://rentry.co/anonaugusproductionsCustomJB | https://rentry.co/crustcrunchGPT | https://rentry.co/Myuu_Jippy | https://rentry.co/CoTonAugus | https://rentry.org/onichan2210 Джейлы на 0125: https://rentry.org/neo-furbo | https://rentry.org/camicle-jb Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://rentry.co/hochi-reupload - Claude - Джейлы: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/absolutejail | https://rentry.co/pitanonbots#prompt-presets | https://rentry.co/XML-dva-shiza | https://rentry.co/crustcrunchJB | https://rentry.co/CharacterProvider | https://rentry.co/MyuuTastic Опус/Соннет: https://rentry.org/Anon4Anon | https://unconvincing.neocities.org/ | https://rentry.org/pancatb3ta | https://rentry.org/AiBrainPresets | https://rentry.org/CladeOpus-GigaSchizoKostyl Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff Префилл: https://rentry.co/aui3u Полезное: https://rentry.org/anonika_infoblock | https://rentry.org/zapominator - Мемо - Мемо вручную: https://rentry.co/DrunkArcadeExample Генератор мемо: https://rentry.co/LazyMemo Мемо на опусе: https://rentry.co/HornyPigs - Bing - https://github.com/Barbariskaa/Biba Гайд: https://rentry.co/BingZOVEdition - Локалки - https://openrouter.ai/ Гайд (на английском): https://rentry.co/meta_golocal_list - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://des une.moe/aichared/ https://agnai.chat/editor https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 - Село 2ch - https://rentry.co/selo2ch - Архив тредов - https://rentry.co/2ch-aicg-archives - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Специфические промпты в джейл для кума: https://rentry.co/jinxbreaks Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Конкурсы - Общая информация: https://rentry.co/2chaicgthemedevents Текущий конкурс: >>705243 → - Шапка - https://rentry.co/shapkacaitreda БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! - Локальные языковые модели: >>661076 (OP) - - Прошлый тред: >>706721 (OP) -
10 августа 2024
Сохранен
1580
29 сентября 2023
Сохранен
571
10 апреля 2023
Сохранен
1547
AI Chatbot General № 515 /aicg/ — AI Chatbot General № 515 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Новости: - Вышел Соннет 3.5: https://www.anthropic.com/news/claude-3-5-sonnet - Карты персонажей V3: https://rentry.org/zdwfrgqq Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Солянка: https://rentry.org/anon4anon • ХМЛК: https://rentry.co/CharacterProvider • Мемо: https://rentry.co/DrunkArcadeExample | https://rentry.co/LazyMemo | https://rentry.co/HornyPigs • Ноасс: https://rentry.org/noass_ext | https://rentry.org/CladeOpus-GigaSchizoKostyl | https://rentry.co/Claude-NoAssTag Полезности • Кум мод: https://rentry.org/coom_mode • РП инфоблок: https://rentry.org/anonika_infoblock • Паки джейлов: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/absolutejail | https://rentry.co/jinxbreaks • Префилы: https://rentry.co/aui3u Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • Чай: https://character.ai/ • GPT чекер ключей: https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc • Claude чекер ключей: https://github.com/Definetelynotbranon/Anthropic_API_Checker Мета • Архив тредов: https://rentry.co/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.co/2chaicgthemedevents | Текущий: >>804111 → • Локальные языковые модели: >>804569 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>804103 (OP)
1 ноября 2024
Сохранен
519
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №46 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/TheBloke/Frostwind-10.7B-v1-GGUF/blob/main/frostwind-10.7b-v1.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/models Модели искать тут, вбиваем название + тип квантования https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>671376 (OP) >>661076 (OP)
29 июня 2024
Сохранен
508
3 апреля 2023
Сохранен
1432
AI Chatbot General № 511 /aicg/ — AI Chatbot General № 511 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Новости: • Вышел Соннет 3.5 - https://www.anthropic.com/news/claude-3-5-sonnet • Карты персонажей V3 - https://rentry.org/zdwfrgqq Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Солянка: https://rentry.org/anon4anon • ХМЛК: https://rentry.co/CharacterProvider • Мемо: https://rentry.co/DrunkArcadeExample | https://rentry.co/LazyMemo | https://rentry.co/HornyPigs • Ноасс: https://rentry.org/noass_ext | https://rentry.org/CladeOpus-GigaSchizoKostyl | https://rentry.co/Claude-NoAssTag Полезности • Кум мод: https://rentry.org/coom_mode • РП инфоблок: https://rentry.org/anonika_infoblock • Паки джейлов: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/absolutejail • Фетиш джейлы: https://rentry.co/jinxbreaks • Префилы: https://rentry.co/aui3u Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • Чай: https://character.ai/ • GPT чекер ключей: https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc • Claude чекер ключей: https://github.com/Definetelynotbranon/Anthropic_API_Checker Мета • Архив тредов: https://rentry.co/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.co/2chaicgthemedevents | Текущий: (Мейда в отпуске) • Локальные языковые модели: >>795133 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>794543 (OP)
26 октября 2024
Сохранен
512
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №21 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. На данный момент развитие идёт в сторону увеличения контекста методом NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Так же террористы выпустили LLaMA 2, которая по тестам ебёт все файнтюны прошлой лламы и местами СhatGPT. Ждём выкладывания LLaMA 2 в размере 30B, которую мордолицые зажали. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в случае Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас в полгига-гиг. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20B-GGUF/blob/main/MLewd-ReMM-L2-Chat-20B.q5_K_M.gguf Если совсем бомж и капчуешь с микроволновки, то можно взять https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-GGUF/blob/main/mistral-7b-openorca.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах, есть поддержка видеокарт, но сделана не идеально, зато самый простой в запуске, инструкция по работе с ним выше. https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ. Самую большую скорость даёт ExLlama, на 7B можно получить литерали 100+ токенов в секунду. Вторая версия ExLlama ещё быстрее. Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://rentry.co/ayumi_erp_rating Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного Факультатив: https://rentry.co/Jarted Почитать, как трансгендеры пидарасы пытаются пиздить код белых господинов, но обсираются и получают заслуженную порцию мочи Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>514196 (OP) >>509370 (OP)
4 марта 2024
Сохранен
1642
AI Chatbot General № 386 /aicg/ — AI Chatbot General № 386 Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/ClaudForAgnai | https://rentry.co/Aicg4Retards (Гайд на английском) https://github.com/SillyLossy/TavernAI | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 4: https://rentry.co/SillyTavern_JB_Pack | https://dumb.one/gpt/prompts-scraped/ Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://web.archive.org/web/20230712205352/https://rentry.org/HochiTurboTips#prompt-sets - Claude - https://github.com/Barbariskaa/Spermack https://github.com/PandarusAnon/slaude https://github.com/bfs15/slaude https://rentry.co/spermflow https://gitgud.io/ahsk/clewd/-/tree/master Джейлы: https://rentry.co/ClaudeJB | https://rentry.co/absolutejail | https://rentry.co/fumblebum | https://rentry.co/pitanonbots#claude-rp-prompts | https://rentry.co/XML-dva-shiza Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff - Bing - https://github.com/Barbariskaa/Biba - Локалки - https://mancer.tech/ Гайд (на английском): https://rentry.co/freellamas - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://avakson.github.io/character-editor/ https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/tai-bots - Село 2ch - https://rentry.co/selo2ch - Архив тредов- https://rentry.co/paxi32 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Список прокси: https://navigatethecoom.github.io/navigate | Ctrl + F ".hf" Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Шапка - https://rentry.co/shapkacaitreda - LLaMA thread: >>457355 (OP) - - PygmalionAI thread: >>359618 (OP) - - Прошлый тред: >>465594 (OP) -
31 декабря 2023
Сохранен
1603
AI Chatbot General № 611 /aicg/ — AI Chatbot General № 611 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Новости • gemini-2.0-flash-thinking-exp-01-21 вышла на Gemini API - https://ai.google.dev/gemini-api/docs/models/experimental-models • deepseek-reasoner вышел на API - https://api-docs.deepseek.com/guides/reasoning_model Большие фронтенды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Малые фронтенды • Adventure-UI: https://rentry.co/CYOA_AdventureUI • Cavern: https://github.com/Barbariskaa/Cavern Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs • Grok: https://docs.x.ai/docs • Mistral: https://docs.mistral.ai/api/ Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.org/2chaicgtavernbots | https://rentry.org/2chaicgtavernbots2 | https://rentry.org/2chaicgtavernbots3 • Бургерские боты: https://rentry.org/meta_bot_list Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.org/2ch-aicg-archives3 • Тредовые ивенты: https://rentry.org/2chaicgthemedevents • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>1034116 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg Прошлый тред: >>1036097 (OP)
6 мая 4:50
Сохранен
1568
AI Chatbot General № 504 /aicg/ — AI Chatbot General № 504 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/Tavern4Retards (Гайд на английском) | https://rentry.org/STAI-Termux (На андроид) Базовые термины: https://2ch-ai.gitgud.site/wiki/llama/ Скрипты SillyTavern (Quick Replies): https://rentry.org/stscript https://github.com/SillyTavern/SillyTavern | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 0314/0613: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/fa5fv | https://dumb.one/gpt/prompts-scraped/ | https://rentry.co/lobstersgpt Джейлы на 1106: https://rentry.co/anonaugusproductionsCustomJB | https://rentry.co/crustcrunchGPT | https://rentry.co/Myuu_Jippy | https://rentry.co/CoTonAugus | https://rentry.org/onichan2210 Джейлы на 0125: https://rentry.org/neo-furbo | https://rentry.org/camicle-jb Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://rentry.co/hochi-reupload - Claude - Джейлы: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/absolutejail | https://rentry.co/pitanonbots#prompt-presets | https://rentry.co/XML-dva-shiza | https://rentry.co/crustcrunchJB | https://rentry.co/CharacterProvider | https://rentry.co/MyuuTastic Опус/Соннет: https://rentry.org/Anon4Anon | https://unconvincing.neocities.org/ | https://rentry.org/pancatb3ta | https://rentry.org/AiBrainPresets | https://rentry.org/CladeOpus-GigaSchizoKostyl Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff Префилл: https://rentry.co/aui3u Полезное: https://rentry.org/anonika_infoblock | https://rentry.org/zapominator - Мемо - Мемо вручную: https://rentry.co/DrunkArcadeExample Генератор мемо: https://rentry.co/LazyMemo Мемо на опусе: https://rentry.co/HornyPigs - Bing - https://github.com/Barbariskaa/Biba Гайд: https://rentry.co/BingZOVEdition - Локалки - https://openrouter.ai/ Гайд (на английском): https://rentry.co/meta_golocal_list - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://des une.moe/aichared/ https://agnai.chat/editor https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 - Село 2ch - https://rentry.co/selo2ch - Архив тредов - https://rentry.co/2ch-aicg-archives2 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Специфические промпты в джейл для кума: https://rentry.co/jinxbreaks Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Конкурсы - Общая информация: https://rentry.co/2chaicgthemedevents Текущий конкурс: >>000000 - Шапка - https://rentry.co/shapkacaitreda БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! - Локальные языковые модели: >>774469 (OP) - - Прошлый тред: >>777556 (OP) -
14 октября 2024
Сохранен
503
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №39 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/TheBloke/Frostwind-10.7B-v1-GGUF/blob/main/frostwind-10.7b-v1.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch (переезжаем на https://2ch-ai.gitgud.site/wiki/llama/ ), предложения принимаются в треде Предыдущие треды тонут здесь: >>616097 (OP) >>604568 (OP)
23 мая 2024
Сохранен
503
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №28 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20B-GGUF/blob/main/MLewd-ReMM-L2-Chat-20B.q5_K_M.gguf Если совсем бомж и капчуешь с микроволновки, то можно взять https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF/blob/main/openhermes-2.5-mistral-7b.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch предложения принимаются в треде Предыдущие треды тонут здесь: >>545044 (OP) >>542483 (OP)
2 апреля 2024
Сохранен
566
Локальные языковые модели (LLM): LLaMA, MPT, Falcon и прочие №35 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2-х бит, на кофеварке с подкачкой на микроволновку. Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Текущим трендом на данный момент являются мультимодальные модели, это когда к основной LLM сбоку приделывают модуль распознавания изображений, что в теории должно позволять LLM понимать изображение, отвечать на вопросы по нему, а в будущем и манипулировать им. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Кроме LLaMA для анона доступны множество других семейств моделей: Pygmalion- заслуженный ветеран локального кума. Старые версии были основаны на древнейшем GPT-J, новые переехали со своим датасетом на LLaMA, но, по мнению некоторых анонов, в процессе потерялась Душа © MPT- попытка повторить успех первой лламы от MosaicML, с более свободной лицензией. Может похвастаться нативным контекстом в 65к токенов в версии storywriter, но уступает по качеству. С выходом LLaMA 2 с более свободной лицензией стала не нужна. Falcon- семейство моделей размером в 40B и 180B от какого-то там института из арабских эмиратов. Примечательна версией на 180B, что является крупнейшей открытой моделью. По качеству несколько выше LLaMA 2 на 70B, но сложности с запуском и малый прирост делаю её не самой интересной. Mistral- модель от Mistral AI размером в 7B, с полным повторением архитектуры LLaMA. Интересна тем, что для своего небольшого размера она не уступает более крупным моделям, соперничая с 13B (а иногда и с 70B), и является топом по соотношению размер/качество. Qwen - семейство моделей размером в 7B и 14B от наших китайских братьев. Отличается тем, что имеет мультимодальную версию с обработкой на входе не только текста, но и картинок. В принципе хорошо умеет в английский, но китайские корни всё же проявляется в чате в виде периодически высираемых иероглифов. Yi - Неплохая китайская модель на 34B, способная занять разрыв после невыхода LLaMA соответствующего размера Сейчас существует несколько версий весов, не совместимых между собой, смотри не перепутай! 0) Оригинальные .pth файлы, работают только с оригинальным репозиторием. Формат имени consolidated.00.pth 1) Веса, сконвертированные в формат Hugging Face. Формат имени pytorch_model-00001-of-00033.bin 2) Веса, квантизированные в GGML/GGUF. Работают со сборками на процессорах. Имеют несколько подформатов, совместимость поддерживает только koboldcpp, Герганов меняет форматы каждый месяц и дропает поддержку предыдущих, так что лучше качать последние. Формат имени ggml-model-q4_0, расширение файла bin для GGML и gguf для GGUF. Суффикс q4_0 означает квантование, в данном случае в 4 бита, версия 0. Чем больше число бит, тем выше точность и расход памяти. Чем новее версия, тем лучше (не всегда). Рекомендуется скачивать версии K (K_S или K_M) на конце. 3) Веса, квантизированные в GPTQ. Работают на видеокарте, наивысшая производительность (особенно в Exllama) но сложности с оффлоадом, возможность распределить по нескольким видеокартам суммируя их память. Имеют имя типа llama-7b-4bit.safetensors (формат .pt скачивать не стоит), при себе содержат конфиги, которые нужны для запуска, их тоже качаем. Могут быть квантованы в 3-4-8 бит (Exllama 2 поддерживает адаптивное квантование, тогда среднее число бит может быть дробным), квантование отличается по числу групп (1-128-64-32 в порядке возрастания качества и расхода ресурсов). Основные форматы это GGML и GPTQ, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGML весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это серьёзно замедлит работу. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/TheBloke/Frostwind-10.7B-v1-GGUF/blob/main/frostwind-10.7b-v1.Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус. https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей http://ayumi.m8geil.de/ayumi_bench_v3_results.html Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка треда находится в https://rentry.co/llama-2ch (переезжаем на https://2ch-ai.gitgud.site/wiki/llama/ ), предложения принимаются в треде Предыдущие треды тонут здесь: >>583852 (OP) >>577814 (OP)
30 апреля 2024
Сохранен
1725
AI Chatbot General № 394 /aicg/ — AI Chatbot General № 394 Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/ClaudForAgnai | https://rentry.co/Aicg4Retards (Гайд на английском) https://github.com/SillyLossy/TavernAI | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 4: https://rentry.co/SillyTavern_JB_Pack | https://dumb.one/gpt/prompts-scraped/ Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://web.archive.org/web/20230712205352/https://rentry.org/HochiTurboTips#prompt-sets - Claude - https://github.com/Barbariskaa/Spermack https://github.com/PandarusAnon/slaude https://github.com/bfs15/slaude https://rentry.co/spermflow https://gitgud.io/ahsk/clewd/-/tree/master https://rentry.co/sg_proxy Джейлы: https://rentry.co/ClaudeJB | https://rentry.co/absolutejail | https://rentry.co/fumblebum | https://rentry.co/pitanonbots#claude-rp-prompts | https://rentry.co/XML-dva-shiza Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff - Bing - https://github.com/Barbariskaa/Biba - Локалки - https://mancer.tech/ Гайды (на английском): https://rentry.co/meta_golocal_list - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://avakson.github.io/character-editor/ https://agnai.chat/editor https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/tai-bots - Село 2ch - https://rentry.co/selo2ch - Архив тредов- https://rentry.co/paxi32 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Специфические промпты в джейл для кума: https://rentry.co/jinxbreaks Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Шапка - https://rentry.co/shapkacaitreda - LLaMA thread: >>472695 (OP) - - PygmalionAI thread: >>359618 (OP) - - Прошлый тред: >>486658 (OP) -
21 января 2024
Сохранен
1553
AI Chatbot General № 506 /aicg/ — AI Chatbot General № 506 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/Tavern4Retards (Гайд на английском) | https://rentry.org/STAI-Termux (На андроид) Базовые термины: https://2ch-ai.gitgud.site/wiki/llama/ Скрипты SillyTavern (Quick Replies): https://rentry.org/stscript https://github.com/SillyTavern/SillyTavern | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 0314/0613: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/fa5fv | https://dumb.one/gpt/prompts-scraped/ | https://rentry.co/lobstersgpt Джейлы на 1106: https://rentry.co/anonaugusproductionsCustomJB | https://rentry.co/crustcrunchGPT | https://rentry.co/Myuu_Jippy | https://rentry.co/CoTonAugus | https://rentry.org/onichan2210 Джейлы на 0125: https://rentry.org/neo-furbo | https://rentry.org/camicle-jb Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://rentry.co/hochi-reupload - Claude - Джейлы: https://rentry.co/SillyTavern_JB_Pack | https://rentry.co/absolutejail | https://rentry.co/pitanonbots#prompt-presets | https://rentry.co/XML-dva-shiza | https://rentry.co/crustcrunchJB | https://rentry.co/CharacterProvider | https://rentry.co/MyuuTastic Опус/Соннет: https://rentry.org/Anon4Anon | https://unconvincing.neocities.org/ | https://rentry.org/pancatb3ta | https://rentry.org/AiBrainPresets | https://rentry.org/CladeOpus-GigaSchizoKostyl Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff Префилл: https://rentry.co/aui3u Полезное: https://rentry.org/anonika_infoblock | https://rentry.org/zapominator - Мемо - Мемо вручную: https://rentry.co/DrunkArcadeExample Генератор мемо: https://rentry.co/LazyMemo Мемо на опусе: https://rentry.co/HornyPigs - Bing - https://github.com/Barbariskaa/Biba Гайд: https://rentry.co/BingZOVEdition - Локалки - https://openrouter.ai/ Гайд (на английском): https://rentry.co/meta_golocal_list - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://des une.moe/aichared/ https://agnai.chat/editor https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 - Село 2ch - https://rentry.co/selo2ch - Архив тредов - https://rentry.co/2ch-aicg-archives2 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Специфические промпты в джейл для кума: https://rentry.co/jinxbreaks Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Конкурсы - Общая информация: https://rentry.co/2chaicgthemedevents Текущий конкурс: >>777474 → (Мэйда ушла в отпуск, конкурсов не будет... FOR NOW.) - Шапка - https://rentry.co/shapkacaitreda БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! - Локальные языковые модели: >>774469 (OP) - - Прошлый тред: >>781796 (OP) -
14 октября 2024
Сохранен
1731
AI Chatbot General № 405 /aicg/ — AI Chatbot General № 405 -----БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту.!!!!БОТОДЕЛЫ----- Общий вопросов по чат-ботам и прочего тред. - Фронтэнды - Agnai, SillyTavern, RisuAI Гайды: https://rentry.co/ultimatespoonfeed | https://rentry.co/ClaudForAgnai | https://rentry.co/Aicg4Retards (Гайд на английском) https://github.com/SillyLossy/TavernAI | https://github.com/ntvm/SillyTavern (Форк нв-куна) https://agnai.chat/ https://risuai.xyz/ - GPT - Джейлы на 4: https://rentry.co/SillyTavern_JB_Pack| https://rentry.co/fa5fv | https://dumb.one/gpt/prompts-scraped/ | https://rentry.co/lobstersgpt Джейлы на Turbo: https://rentry.co/YAnonTurbo | https://rentry.co/hochi-reupload - Claude - https://github.com/Barbariskaa/Spermack https://github.com/PandarusAnon/slaude https://github.com/bfs15/slaude https://rentry.co/spermflow https://gitgud.io/ahsk/clewd/-/tree/master https://rentry.co/sg_proxy Джейлы: https://rentry.co/SillyTavern_JB_Pack| https://rentry.co/ClaudeJB | https://rentry.co/absolutejail | https://rentry.co/fumblebum | https://rentry.co/pitanonbots#claude-rp-prompts | https://rentry.co/XML-dva-shiza Удаление Human/Assistant: https://rentry.co/TavernNoAss | https://rentry.co/HumAssistOff Префилл: https://rentry.co/aui3u - Bing - https://github.com/Barbariskaa/Biba - Локалки - https://mancer.tech/ Гайды (на английском): https://rentry.co/meta_golocal_list - Ботоводчество - https://www.chub.ai https://booru.plus/+pygmalion https://avakson.github.io/character-editor/ https://agnai.chat/editor https://rentry.co/botmaking_tips https://rentry.co/MothsBotMakingStuff https://rentry.co/oaicards Боты анонов: https://rentry.co/2chaicgtavernbots Ботоделам: Ваших новых ботов желательно прикреплять к шапке. - Село 2ch - https://rentry.co/selo2ch - Архив тредов- https://rentry.co/paxi32 - GIGACHAT - https://rentry.co/3bc7r - Character.AI - https://beta.character.ai/ https://rentry.co/CAI-FAQ Боты анонов: https://rentry.co/CAI-bots - Прочее - Проверить ключ: GPT https://github.com/Buhankoanon/OAI_API_Checker | https://github.com/CncAnon1/kkc Claude https://github.com/Definetelynotbranon/Anthropic_API_Checker Специфические промпты в джейл для кума: https://rentry.co/jinxbreaks Забавные промпты после кума: https://rentry.co/weirdbutfunjailbreaksandprompts - Конкурсы - Общая информация: https://rentry.co/2chaicgthemedevents Текущий конкурс: >>499108 → - Шапка - https://rentry.co/shapkacaitreda - LLaMA thread: >>499110 (OP) - - PygmalionAI thread: >>359618 (OP) - - Прошлый тред: >>518282 (OP) -
3 марта 2024
Сохранен
543
26 апреля 2023