Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Сохранен
556
Stable Diffusion Flux тред X+117 /sd/ — Stable Diffusion Flux тред X+117 ====================================== Предыдущий тред >>894310 (OP) https://arhivach.top/?tags=13840 ------------------------------------------ схожий тематический тред - аниме-тред >>897818 (OP) ======================== Stable Diffusion (SD) - открытая нейросеть генеративного искусства для создания картинок из текста/исходных картинок, обучения на своих изображениях. Flux — открытая нейросеть нового поколения для генерации изображений от стартапа Black Forest Labs, основанного бывшими разработчиками Stable Diffusion. Полный функционал в локальной установке (см. ниже) Пробный онлайн-генератор Stable Diffusion: https://dezgo.com/txt2img Пробные онлайн-генераторы Flux: https://huggingface.co/black-forest-labs https://fluxpro.art/ ⚠️ Официальные модели stable diffusion от Stability AI значительно отстают по качеству от кастомных моделей (см. civitai ниже). ???? Без цензуры и полный функци_анал: только ПК-версия =========================================== ????УСТАНОВКА НА ПК WebUI от Automatic1111 https://teletype.in/@stablediffusion/PC_install_SD ------------------------------------------ ???? Для новичков - простой в работе WebUI Fooocus https://github.com/lllyasviel/Fooocus?tab=readme-ov-file#download ------------------------------------------ Портативная версия альтернативного WebUI от Comfy (запуск с одного из run.bat файлов) https://github.com/comfyanonymous/ComfyUI/releases Примерные workflow для ComfyUI (можно загружать напрямую из картинок) https://comfyanonymous.github.io/ComfyUI_examples/ ------------------------------------------ Для тех, у кого видеокарта не тянет - ускоренная генерация на ЦПУ https://github.com/rupeshs/fastsdcpu =========================================== ???? РАЗЛИЧНЫЕ МОДЕЛИ (И МНОГОЕ ДРУГОЕ) ???? https://civitai.com/ https://huggingface.co/ ------------------------------------------ ???? ПАРАМЕТРЫ И НАСТРОЙКИ ГЕНЕРАЦИИ ???? https://teletype.in/@stablediffusion/samplers_steps =========================================== ???? ГАЙД ПО СОСТАВЛЕНИЮ ЗАПРОСА, СТИЛИ https://teletype.in/@stablediffusion/artists_for_prompts Пример промпта (запроса) для sd1.5 или SDXL: an european girl, standing, high quality, soft focus, 8k, photograph by nick nichols Пример промпта (запроса) для Flux: This photo shows a small smiling young caucasian adult woman with blonde hair wearing a pink t-shirt with the words "SD3" and panties sitting on a white couch with her legs crossed in a yoga pose, in the background of the image behind the couch there a several standing large buff african american men wearing white t-shirts with the words "FLUX" and white shorts, they are staring at the blode young woman, the woman is very small in the image allowing the men to tower over her ------------------------------------------ ♾️РАЗЛИЧНЫЕ ХУДОЖЕСТВЕННЫЕ СТИЛИ (С ПРИМЕРАМИ) ???? https://supagruen.github.io/StableDiffusion-CheatSheet/ https://www.artvy.ai/styles ------------------------------------------ ????ЧТО ТАКОЕ CONTROLNET И КАК ЕГО ИСПОЛЬЗОВАТЬ https://dtf.ru/howto/1669307-ustanovka-i-obyasnenie-nastroek-control-net-kopirovanie-pozy-kompozicii-i-td ========================================== ???? ОБУЧЕНИЕ ПО СВОИМ КАРТИНКАМ ???? https://dtf.ru/howto/1660668-obuchenie-modeli-s-pomoshchyu-lora https://civitai.com/models/train
21 января 20:29
Сохранен
1525
AI Chatbot General № 557 /aicg/ — AI Chatbot General № 557 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.org/2chaicgtavernbots | https://rentry.org/2chaicgtavernbots2 | https://rentry.org/2chaicgtavernbots3 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.org/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.org/2chaicgthemedevents | Текущий: >>900381 → • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>905276 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>904530 (OP)
21 января 20:29
Сохранен
497
17 марта 13:03
Сохранен
522
3 февраля 9:51
Сохранен
503
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №83 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model • Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing • Инструкции для запуска базы при помощи Docker Compose https://rentry.co/oddx5sgq https://rentry.co/7kp5avrk Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>900425 (OP) >>895645 (OP)
27 января 21:01
Сохранен
1544
AI Chatbot General № 555 /aicg/ — AI Chatbot General № 555 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.org/2chaicgtavernbots | https://rentry.org/2chaicgtavernbots2 | https://rentry.org/2chaicgtavernbots3 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.org/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.org/2chaicgthemedevents | Текущий: >>900381 → • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>900425 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>899622 (OP)
21 января 20:29
Сохранен
1505
AI Chatbot General № 554 /aicg/ — AI Chatbot General № 554 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 | https://rentry.co/2chaicgtavernbots3 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.co/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.co/2chaicgthemedevents | Текущий: >>896904 → • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>895645 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>896826 (OP)
21 января 20:29
Сохранен
504
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №81 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>890904 (OP) >>885509 (OP)
21 января 20:29
Сохранен
508
26 января 22:11
Сохранен
505
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №80 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>885509 (OP) >>878677 (OP)
17 января 22:52
Сохранен
506
17 января 22:52
Сохранен
525
Музыкальный общий №6 /music/ — ♫ Udio ♫ https://www.udio.com/ Вышла версия 1.5. Лимит 400 кредитов в месяц (или 200 генераций по 33 секунды каждая). ♫ Suno ♫ https://app.suno.ai/ генерация на сайте https://suno.ai/discord генерация на официальном discord-сервере https://rentry.co/suno_tips советы по использованию https://www.suno.wiki вики Лимиты: 10 генераций в день. Нужна платная подписка чтобы увеличить лимиты, либо можно абузить сервис через создание множества аккаунтов ♫ Локальные модели ♫ Ждём и надеемся... В прошлом треде какой-то анон написал про AudioCraft и MusicGen, можете прочекать, что это ????️ Открытый бета-тест Udio В открытую бету вышла нейросеть Udio, которая, по словам множества пользователей, превосходит Suno V3 в генерации музыкальных композиций. Пока идёт бета-тест, доступно 1200 генераций в месяц с одного аккаунта. Udio и Suno поддерживают множество языков для вокала (включая русский) и большое разнообразие жанров. Ориджинал контент крайне приветствуется. Прошлый тред: >>801650 (OP)
28 января 21:18
Сохранен
502
DALL-E тред #7 /dalle/ — Генерируем бесплатно через Bing: https://www.bing.com/images/create Генерация за бабосы через OpenAI: https://labs.openai.com Оплата картой, жители этой страны без зарубежной карты в пролёте. Как вкатиться: Через впн заходишь и регаешь аккаунт на Bing. Если просит телефон, то перезагружаешь страницу до победного/меняешь впн. Как получить бусты: Если заканчиваются ежедневные бусты, то либо чистишь историю поиска в Bing (Меню профиля - Search History - Clear all. Потребует снова подтвердить почту), либо создаёшь новый аккаунт, либо генерируешь с задержкой, которая определяется в зависимости от загруженности сервера. Примерно до 15:00 по Москве обычно генерируется без длинных ожиданий. Цензуре подвергаются следующие вещи: 1. Запрещена генерация жестокого контента, контента "для взрослых" и контента "провоцирующего ненависть" 2. Запрещена генерация изображений публичных личностей 3. Запрещена генерация изображений в стиле ныне живущих художников Кредиты не тратятся, если ваш запрос не прошёл цензуру. Как обходить цензуру: Цензуру постоянно дообучают. Бинг проверяет как сам промт, так и картинку которая получилась. Иногда это можно обходить, пример: 1. Помогает добавить частицу "не". "not Ryan not Gosling" поможет обойти цензуру на реальных людей 2. Если хочется сгенерировать что-то шальное, иногда помогает добавить деталей в картину, сместив фокус с того что хочется. 3. Визуальная цензура может не заметить запрещенный контент. Сиськи в татуировках легче протащить, так же как и голое тело в светящихся фракталах 4. Помогает пикантные моменты запихивать в конец промта. Если при этом нейросеть его игнорит, перемещать ближе к началу предложения и/или удваивать, типа "Not tights. Not stockings" Ресурсы: https://pastebin.com/qDRXFfBM гайд от форчановских братушек https://fex.plus и https://temp-mail.org - временная почта для новых акков https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2 де-промптер, разбирающий вброшенный пик на теги. Говённый, но может подсказать новые идеи. https://huggingface.co/spaces/Xintao/GFPGAN перерисовывает лица, изредка убирая баги генерации и добавляя новые. https://bigjpg.com апскейлер до 4096х4096. Мыло, но иногда надо. https://inpaintgimpplugin.github.io Gimp Inpainting Plug-in, позволяющий закрасить шестой палец и третью руку. https://drawingprompt.com рандомные идеи для промтов https://rentry.org/m5ph54 советы по обходу цензуры Прошлый >>560915 (OP)
29 сентября 2024
Сохранен
511
Локальные языковые модели (LLM): LLaMA, Mistral, Command-R и прочие №72 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды стонут здесь: >>825177 (OP) >>819978 (OP)
2 декабря 2024
Сохранен
502
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №74 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках подходящий пресет. Для модели из инструкции выше это Mistral 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://github.com/Mobile-Artificial-Intelligence/maid Запуск самой модели на телефоне https://github.com/Vali-98/ChatterUI Фронт для телефона https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>834981 (OP) >>829353 (OP)
10 декабря 2024
Сохранен
505
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №73 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/Sao10K/Fimbulvetr-11B-v2-GGUF/blob/main/Fimbulvetr-11B-v2.q4_K_S.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках пресетов Alpaca 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://github.com/Mobile-Artificial-Intelligence/maid Запуск самой модели на телефоне https://github.com/Vali-98/ChatterUI Фронт для телефона https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>829353 (OP) >>825177 (OP)
5 декабря 2024
Сохранен
529
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №79 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>878677 (OP) >>869674 (OP)
11 января 19:44
Сохранен
517
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №78 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>869674 (OP) >>864092 (OP)
4 января 10:08
Сохранен
532
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №77 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф. картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Официальная вики треда с гайдами по запуску и базовой информацией: https://2ch-ai.gitgud.site/wiki/llama/ Инструменты для запуска на десктопах: • Самый простой в использовании и установке форк llamacpp, позволяющий гонять GGML и GGUF форматы: https://github.com/LostRuins/koboldcpp • Более функциональный и универсальный интерфейс для работы с остальными форматами: https://github.com/oobabooga/text-generation-webui • Однокнопочные инструменты с ограниченными возможностями для настройки: https://github.com/ollama/ollama, https://lmstudio.ai • Универсальный фронтенд, поддерживающий сопряжение с koboldcpp и text-generation-webui: https://github.com/SillyTavern/SillyTavern Инструменты для запуска на мобилках: • Интерфейс для локального запуска моделей под андроид с llamacpp под капотом: https://github.com/Mobile-Artificial-Intelligence/maid • Альтернативный вариант для локального запуска под андроид (фронтенд и бекенд сепарированы): https://github.com/Vali-98/ChatterUI • Гайд по установке SillyTavern на ведроид через Termux: https://rentry.co/STAI-Termux Модели и всё что их касается: • Актуальный список моделей с отзывами от тредовичков: https://rentry.co/llm-models • Неактуальный список моделей устаревший с середины прошлого года: https://rentry.co/lmg_models • Рейтинг моделей для кума со спорной методикой тестирования: https://ayumi.m8geil.de/erp4_chatlogs • Рейтинг моделей по уровню их закошмаренности цензурой: https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard • Сравнение моделей по сомнительным метрикам: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard • Сравнение моделей реальными пользователями по менее сомнительным метрикам: https://chat.lmsys.org/?leaderboard Дополнительные ссылки: • Готовые карточки персонажей для ролплея в таверне: https://www.characterhub.org • Пресеты под локальный ролплей в различных форматах: https://huggingface.co/Virt-io/SillyTavern-Presets • Шапка почившего треда PygmalionAI с некоторой интересной информацией: https://rentry.co/2ch-pygma-thread • Официальная вики koboldcpp с руководством по более тонкой настройке: https://github.com/LostRuins/koboldcpp/wiki • Официальный гайд по сопряжению бекендов с таверной: https://docs.sillytavern.app/usage/local-llm-guide/how-to-use-a-self-hosted-model https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>864092 (OP) >>854573 (OP)
4 января 10:08
Сохранен
506
Локальные языковые модели (LLM): LLaMA, Mistral, Gemma и прочие №76 /llama/ — В этом треде обсуждаем генерацию охуительных историй и просто общение с большими языковыми моделями (LLM). Всё локально, большие дяди больше не нужны! Здесь мы делимся рецептами запуска, настроек и годных промтов, расширяем сознание контекст, и бугуртим с кривейшего тормозного говна. Тред для обладателей топовых карт NVidia с кучей VRAM или мажоров с проф картами уровня A100, или любителей подождать, если есть оперативная память. Особо терпеливые могут использовать даже подкачку и запускать модели, квантованные до 8 5 4 3 2 0,58 бит, на кофеварке с подкачкой на микроволновку. Здесь и далее расположена базовая информация, полная инфа и гайды в вики https://2ch-ai.gitgud.site/wiki/llama/ Базовой единицей обработки любой языковой модели является токен. Токен это минимальная единица, на которые разбивается текст перед подачей его в модель, обычно это слово (если популярное), часть слова, в худшем случае это буква (а то и вовсе байт). Из последовательности токенов строится контекст модели. Контекст это всё, что подаётся на вход, плюс резервирование для выхода. Типичным максимальным размером контекста сейчас являются 2к (2 тысячи) и 4к токенов, но есть и исключения. В этот объём нужно уместить описание персонажа, мира, истории чата. Для расширения контекста сейчас применяется метод NTK-Aware Scaled RoPE. Родной размер контекста для Llama 1 составляет 2к токенов, для Llama 2 это 4к, Llama 3 обладает базовым контекстом в 8к, но при помощи RoPE этот контекст увеличивается в 2-4-8 раз без существенной потери качества. В версии Llama 3.1 контекст наконец-то расширили до приличных 128к, теперь хватит всем! Базовым языком для языковых моделей является английский. Он в приоритете для общения, на нём проводятся все тесты и оценки качества. Большинство моделей хорошо понимают русский на входе т.к. в их датасетах присутствуют разные языки, в том числе и русский. Но их ответы на других языках будут низкого качества и могут содержать ошибки из-за несбалансированности датасета. Существуют мультиязычные модели частично или полностью лишенные этого недостатка, из легковесных это openchat-3.5-0106, который может давать качественные ответы на русском и рекомендуется для этого. Из тяжёлых это Command-R. Файнтюны семейства "Сайга" не рекомендуются в виду их низкого качества и ошибок при обучении. Основным представителем локальных моделей является LLaMA. LLaMA это генеративные текстовые модели размерами от 7B до 70B, притом младшие версии моделей превосходят во многих тестах GTP3 (по утверждению самого фейсбука), в которой 175B параметров. Сейчас на нее существует множество файнтюнов, например Vicuna/Stable Beluga/Airoboros/WizardLM/Chronos/(любые другие) как под выполнение инструкций в стиле ChatGPT, так и под РП/сторитейл. Для получения хорошего результата нужно использовать подходящий формат промта, иначе на выходе будут мусорные теги. Некоторые модели могут быть излишне соевыми, включая Chat версии оригинальной Llama 2. Недавно вышедшая Llama 3 в размере 70B по рейтингам LMSYS Chatbot Arena обгоняет многие старые снапшоты GPT-4 и Claude 3 Sonnet, уступая только последним версиям GPT-4, Claude 3 Opus и Gemini 1.5 Pro. Про остальные семейства моделей читайте в вики. Основные форматы хранения весов это GGUF и EXL2, остальные нейрокуну не нужны. Оптимальным по соотношению размер/качество является 5 бит, по размеру брать максимальную, что помещается в память (видео или оперативную), для быстрого прикидывания расхода можно взять размер модели и прибавить по гигабайту за каждые 1к контекста, то есть для 7B модели GGUF весом в 4.7ГБ и контекста в 2к нужно ~7ГБ оперативной. В общем и целом для 7B хватает видеокарт с 8ГБ, для 13B нужно минимум 12ГБ, для 30B потребуется 24ГБ, а с 65-70B не справится ни одна бытовая карта в одиночку, нужно 2 по 3090/4090. Даже если использовать сборки для процессоров, то всё равно лучше попробовать задействовать видеокарту, хотя бы для обработки промта (Use CuBLAS или ClBLAS в настройках пресетов кобольда), а если осталась свободная VRAM, то можно выгрузить несколько слоёв нейронной сети на видеокарту. Число слоёв для выгрузки нужно подбирать индивидуально, в зависимости от объёма свободной памяти. Смотри не переборщи, Анон! Если выгрузить слишком много, то начиная с 535 версии драйвера NVidia это может серьёзно замедлить работу, если не выключить CUDA System Fallback в настройках панели NVidia. Лучше оставить запас. Гайд для ретардов для запуска LLaMA без излишней ебли под Windows. Грузит всё в процессор, поэтому ёба карта не нужна, запаситесь оперативкой и подкачкой: 1. Скачиваем koboldcpp.exe https://github.com/LostRuins/koboldcpp/releases/ последней версии. 2. Скачиваем модель в gguf формате. Например вот эту: https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_M.gguf Можно просто вбить в huggingace в поиске "gguf" и скачать любую, охуеть, да? Главное, скачай файл с расширением .gguf, а не какой-нибудь .pt 3. Запускаем koboldcpp.exe и выбираем скачанную модель. 4. Заходим в браузере на http://localhost:5001/ 5. Все, общаемся с ИИ, читаем охуительные истории или отправляемся в Adventure. Да, просто запускаем, выбираем файл и открываем адрес в браузере, даже ваша бабка разберется! Для удобства можно использовать интерфейс TavernAI 1. Ставим по инструкции, пока не запустится: https://github.com/Cohee1207/SillyTavern 2. Запускаем всё добро 3. Ставим в настройках KoboldAI везде, и адрес сервера http://127.0.0.1:5001 4. Активируем Instruct Mode и выставляем в настройках подходящий пресет. Для модели из инструкции выше это Mistral 5. Радуемся Инструменты для запуска: https://github.com/LostRuins/koboldcpp/ Репозиторий с реализацией на плюсах https://github.com/oobabooga/text-generation-webui/ ВебуУИ в стиле Stable Diffusion, поддерживает кучу бекендов и фронтендов, в том числе может связать фронтенд в виде Таверны и бекенды ExLlama/llama.cpp/AutoGPTQ https://github.com/ollama/ollama , https://lmstudio.ai/ и прочее - Однокнопочные инструменты для полных хлебушков, с красивым гуем и ограниченным числом настроек/выбором моделей Ссылки на модели и гайды: https://huggingface.co/TheBloke Основной поставщик квантованных моделей под любой вкус до 1 февраля 2024 года https://huggingface.co/LoneStriker, https://huggingface.co/mradermacher Новые поставщики квантов на замену почившему TheBloke https://rentry.co/TESFT-LLaMa Не самые свежие гайды на ангельском https://rentry.co/STAI-Termux Запуск SillyTavern на телефоне https://github.com/Mobile-Artificial-Intelligence/maid Запуск самой модели на телефоне https://github.com/Vali-98/ChatterUI Фронт для телефона https://rentry.co/lmg_models Самый полный список годных моделей https://ayumi.m8geil.de/erp4_chatlogs/ Рейтинг моделей для кума со спорной методикой тестирования https://rentry.co/llm-training Гайд по обучению своей лоры https://rentry.co/2ch-pygma-thread Шапка треда PygmalionAI, можно найти много интересного https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard Сравнение моделей по (часто дутым) метрикам (почитать характерное обсуждение) https://chat.lmsys.org/?leaderboard Сравнение моделей на "арене" реальными пользователями. Более честное, чем выше, но всё равно сравниваются зирошоты https://huggingface.co/Virt-io/SillyTavern-Presets Пресеты для таверны для ролеплея https://colab.research.google.com/drive/11U-bC6AxdmMhd3PF9vWZpLdi6LdfnBQ8?usp=sharing Последний известный колаб для обладателей отсутствия любых возможностей запустить локально https://rentry.co/llm-models Актуальный список моделей от тредовичков Шапка в https://rentry.co/llama-2ch, предложения принимаются в треде Предыдущие треды тонут здесь: >>854573 (OP) >>844088 (OP)
24 декабря 2024
Сохранен
513
Anime Diffusion #168 /nai/ — Генерируем тяночек! Прошлый тред: >>878654 (OP) https://arhivach.xyz/thread/1062789/ Схожие тематические треды • SD-тред (не аниме): >>882333 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Информация про модели • FLUX: https://2ch-ai.gitgud.site/wiki/nai/models/flux/ • Pony Diffusion V6 XL: https://2ch-ai.gitgud.site/wiki/nai/models/pony-diffusion-v6-xl/ • Stable Diffusion XL: https://2ch-ai.gitgud.site/wiki/nai/models/stable-diffusion-xl/ • EasyFluff + hll: https://2ch-ai.gitgud.site/wiki/nai/models/easy-fluff/ • NovelAI V1: https://2ch-ai.gitgud.site/wiki/nai/models/nai-v1/ Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
15 января 13:55
Активный
377
Этика ИИ #3 /ethics/ — Тред по вопросам этики ИИ. Предыдущий >>514476 (OP) Из недавних новостей: - Разработанная в КНР языковая модель Ernie (аналог ChatGPT) призвана "отражать базовые ценности социализма". Она утверждает, что Тайвань - не страна, что уйгуры в Синьцзяне пользуются равным положением с другими этническими группами, а также отрицает известные события на площади Тяньаньмэнь и не хочет говорить про расстрел демонстрантов. https://mpost.io/female-led-ai-startups-face-funding-hurdles-receiving-less-than-3-of-vc-support/ - ИИ - это сугубо мужская сфера? Стартапы в сфере искусственного интеллекта, возглавляемые женщинами, сталкиваются со значительными различиями в объемах финансирования: они получают в среднем в шесть раз меньше капитала за сделку по сравнению со своими аналогами, основанными мужчинами. Многие ИИ-стартапы основаны командами целиком из мужчин. https://www.koreatimes.co.kr/www/opinion/2023/10/638_342796.html - Исследователи из Кореи: модели ИИ для генерации графики склонны создавать гиперсексуализированные изображения женщин. В каждом изображении по умолчанию большая грудь и тому подобное. Это искажает действительность, потому что в реальности далеко не каждая женщина так выглядит. https://mpost.io/openai-may-already-reach-agi-but-will-try-to-downplay-progress-due-to-force-stop/ - Возможно, что OpenAI уже создали AGI, но замалчивают это, принижают свой прогресс и намеренно завышают планку того, что считается полноценным AGI. Тейки из предыдущего треда: 1. Генерация дипфейков. Они могут фабриковаться для дезинформации и деструктивных вбросов, в т.ч. со стороны авторитарных государств. Порнографические дипфейки могут рушить репутацию знаменитостей (например, когда в интернетах вдруг всплывает голая Эмма Уотсон). Возможен даже шантаж через соцсети, обычной тянки, которую правдоподобно "раздели" нейронкой. Или, дипфейк чтобы подвести кого-то под "педофильскую" статью. Еще лет пять назад был скандал вокруг раздевающей нейронки, в итоге все подобные разработки были свернуты. 2. Замещение людей на рынке труда ИИ-системами, которые выполняют те же задачи в 100 раз быстрее. Это относится к цифровым художникам, программистам-джуниорам, писателям. Скоро ИИ потеснит 3д-моделеров, исполнителей музыки, всю отрасль разработки видеоигр и всех в киноиндустрии. При этом многие страны не предлагают спецам адекватной компенсации или хотя бы социальных программ оказания помощи. 3. Распознавание лиц на камерах, и усовершенствование данной технологии. Всё это применяется тоталитарными режимами, чтобы превращать людей в бесправный скот. После опыта в Гонконге Китай допиливает алгоритм, чтобы распознавать и пробивать по базе даже людей в масках - по росту, походке, одежде, любым мелочам. 4. Создание нереалистичных образов и их социальные последствия. Группа южнокорейских исследователей поднимала тему о создании средствами Stable Diffusion и Midjourney не соответствующих действительности (гиперсексуализированных) изображений женщин. Многие пользователи стремятся написать такие промпты, чтобы пикчи были как можно круче, "пизже". Публично доступный "AI art" повышает планку и оказывает давление уже на реальных женщин, которые вынуждены гнаться за неадекватно завышенными стандартами красоты. 5. Возможность создания нелегальной порнографии с несовершеннолетними. Это в свою очередь ведет к нормализации ЦП феноменом "окна Овертона" (сначала обсуждение неприемлемо, затем можно обсуждать и спорить, затем это часть повседневности). Сложности добавляет то, что присутствие обычного прона + обычных детей в дате делает возможным ЦП. Приходится убирать или то, или другое. 6. Кража интеллектуальной собственности. Данные для тренировки передовых моделей были собраны со всего интернета. Ободрали веб-скраппером каждый сайт, каждую платформу для художников, не спрашивая авторов контента. Насколько этичен такой подход? (Уже в DALL-E 3 разработчики всерьез занялись вопросом авторского права.) Кроме того, безответственный подход пользователей, которые постят "оригинальные" изображения, сгенерированные на основе работы художника (ИИ-плагиат). 7. Понижение средней планки произведений искусства: ArtStation и Pixiv засраны дженериком с артефактами, с неправильными кистями рук. 8. Индоктринация пользователей идеями ненависти. Распространение экстремистских идей через языковые модели типа GPT (нацизм и его производные, расизм, антисемитизм, ксенофобия, шовинизм). Зачастую ИИ предвзято относится к меньшинствам, например обрезает групповую фотку, чтобы убрать с нее негра и "улучшить" фото. Это решается фильтрацией данных, ибо говно на входе = говно на выходе. Один старый чатбот в свое время произвел скандал и породил мем "кибернаци", разгадка была проста: его обучали на нефильтрованных текстах из соцсетей. 9. Рост киберпреступности и кража приватных данных. Всё это обостряется вместе с совершенствованием ИИ, который может стать оружием в руках злоумышленника. Более того, корпорация которая владеет проприетарным ИИ, может собирать любые данные, полученные при использовании ИИ. 10. Понижение качества образования, из-за халтуры при написании работ с GPT. Решается через создание ИИ, заточенного на распознавание сгенерированного текста. Но по мере совершенствования моделей придется совершенствовать и меры по борьбе с ИИ-халтурой. 11. Вопросы юридической ответственности. Например, автомобиль с ИИ-автопилотом сбил пешехода. Кому предъявлять обвинение? 12. Оружие и военная техника, автономно управляемые ИИ. Крайне аморальная вещь, даже когда она полностью под контролем владельца. Стивен Хокинг в свое время добивался запрета на военный ИИ.
сегодня 4:50
Сохранен
1562
AI Chatbot General № 548 /aicg/ — AI Chatbot General № 548 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 | https://rentry.co/2chaicgtavernbots3 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.co/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.co/2chaicgthemedevents | Текущий: >>879601 → • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>878677 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>880845 (OP)
4 января 10:08
Сохранен
1501
AI Chatbot General № 547 /aicg/ — AI Chatbot General № 547 БОТОДЕЛЫ!!!! Прикрепляйте новых ботов к оп-посту!!!! Общий вопросов по чат-ботам и прочего тред. Фронтэнды • SillyTavern: https://github.com/SillyTavern/SillyTavern | https://docs.sillytavern.app | https://github.com/ntvm/SillyTavern (форк нв-куна) • Гайды на таверну: https://rentry.co/Tavern4Retards | https://rentry.org/STAI-Termux (на андроид) • Agnai: https://agnai.chat/ • Risu: https://risuai.xyz/ Модели • Claude: https://docs.anthropic.com/en/docs • GPT: https://platform.openai.com/docs • Gemini: https://ai.google.dev/gemini-api/docs Пресеты • Бургерский список: https://rentry.org/jb-listing • Тредовский список: https://rentry.org/2ch-aicg-jb Полезности • Тредовский список: https://rentry.org/2ch-aicg-utils Ботоводчество • Чуб: https://characterhub.org | https://chub.ai/characters • Гайды: https://rentry.org/meta_botmaking_list • Редакторы: https://agnai.chat/editor | https://des une.moe/aichared/ • Боты анонов: https://rentry.co/2chaicgtavernbots | https://rentry.co/2chaicgtavernbots2 | https://rentry.co/2chaicgtavernbots3 Прочее • Термины LLM: https://2ch-ai.gitgud.site/wiki/llama/ • База по Клоду: https://rentry.org/how2claude • Чекер ключей: https://github.com/kingbased/keychecker • Чай: https://character.ai/ Прокси • gpt-4o-mini: https://unicorn.scylla.wtf/ Мета • Архив тредов: https://rentry.co/2ch-aicg-archives2 • Тредовые ивенты: https://rentry.co/2chaicgthemedevents | Текущий: >>879601 → • Реквесты ботоделам: https://rentry.org/2ch-aicg-requests • Локальные языковые модели: >>878677 (OP) • Шаблон шапки: https://rentry.org/shapka_aicg/raw Прошлый тред: >>878209 (OP)
4 января 10:08
Сохранен
504
Anime Diffusion #167 /nai/ — Генерируем тяночек! Прошлый тред: >>868427 (OP) https://arhivach.top/thread/1057892/ Схожие тематические треды • SD-тред (не аниме): >>877089 (OP) • Технотред: >>758561 (OP) FAQ (устарел) https://rentry.co/nai_faq Ставим локально • NVidia: https://rentry.co/2ch_nai_guide • AMD: https://rentry.co/SD-amd-gpu AMD-юзерам также рекомендуется ознакомиться с гайдом для NVidia, поскольку в нём много общей инфы. Генерируем в облаке • https://civitai.com • https://tensor.art • https://seaart.ai • https://pixai.art • https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb Интерфейсы • AUTOMATIC1111: https://github.com/AUTOMATIC1111/stable-diffusion-webui • Forge: https://github.com/lllyasviel/stable-diffusion-webui-forge • reForge: https://github.com/Panchovix/stable-diffusion-webui-reForge • ComfyUI: https://github.com/comfyanonymous/ComfyUI • Fooocus: https://github.com/lllyasviel/Fooocus Где брать модели • https://civitai.com • https://huggingface.co/models?other=stable-diffusion Информация про модели • FLUX: https://2ch-ai.gitgud.site/wiki/nai/models/flux/ • Pony Diffusion V6 XL: https://2ch-ai.gitgud.site/wiki/nai/models/pony-diffusion-v6-xl/ • Stable Diffusion XL: https://2ch-ai.gitgud.site/wiki/nai/models/stable-diffusion-xl/ • EasyFluff + hll: https://2ch-ai.gitgud.site/wiki/nai/models/easy-fluff/ • NovelAI V1: https://2ch-ai.gitgud.site/wiki/nai/models/nai-v1/ Расширения • AUTOMATIC1111: https://rentry.co/sd_automatic_extensions • Forge: https://github.com/Haoming02/sd-forge-couple ControlNet • https://stable-diffusion-art.com/controlnet (англ) • https://2ch-ai.gitgud.site/wiki/nai/controlnet/controlnet-complete-guide (перевод статьи выше) • https://www.itshneg.com/controlnet-upravlyaj-pozami-v-stable-diffusion Апскейл • https://rentry.co/sd__upscale • https://rentry.co/SD_upscale • https://rentry.co/2ch_nai_guide#апскейл • https://rentry.co/UpscaleByControl Обучение LoRA • https://rentry.co/waavd • https://rentry.co/2chAI_hard_LoRA_guide Прочее • AIBooru: https://aibooru.online/ • Гайды на английском: https://stable-diffusion-art.com/tutorials/ • Больше ссылок: https://rentry.co/sdg-link • Шаблон для переката: https://rentry.co/nwhci
4 января 10:08