Прошлые домены не функционирует! Используйте адрес ARHIVACH.VC.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Активный
533
5 июня 19:17
Активный
85
5 июня 19:17
Сохранен
534
14 декабря 2022
Сохранен
590
7 декабря 2022
Сохранен
508
17 декабря 2022
Сохранен
523
13 декабря 2022
Сохранен
567
12 декабря 2022
Сохранен
1015
8 мая 2023
Сохранен
607
15 января 2023
Сохранен
304
15 марта 2023
Сохранен
539
29 августа 2023
Сохранен
563
14 ноября 2022
Сохранен
604
26 апреля 2023
Сохранен
506
23 июня 2023
Сохранен
538
12 ноября 2023
Сохранен
552
Stable Diffusion технотред #17 /tech/ — ИТТ делимся советами, лайфхаками, наблюдениями, результатами обучения, обсуждаем внутреннее устройство диффузионных моделей, собираем датасеты, решаем проблемы и экспериментируем Тред общенаправленныей, тренировка дедов, лупоглазых и фуррей приветствуются Предыдущий тред: >>639060 (OP) ➤ Софт для обучения https://github.com/kohya-ss/sd-scripts Набор скриптов для тренировки, используется под капотом в большей части готовых GUI и прочих скриптах. Для удобства запуска можно использовать дополнительные скрипты в целях передачи параметров, например: https://rentry.org/simple_kohya_ss ➤ GUI-обёртки для sd-scripts https://github.com/bmaltais/kohya_ss https://github.com/derrian-distro/LoRA_Easy_Training_Scripts https://github.com/anon-1337/LoRA-train-GUI ➤ Обучение SDXL https://2ch-ai.gitgud.site/wiki/tech/sdxl/ ➤ Гайды по обучению Существующую модель можно обучить симулировать определенный стиль или рисовать конкретного персонажа. ✱ LoRA – "Low Rank Adaptation" – подойдет для любых задач. Отличается малыми требованиями к VRAM (6 Гб+) и быстрым обучением. https://github.com/cloneofsimo/lora - изначальная имплементация алгоритма, пришедшая из мира архитектуры transformers, тренирует лишь attention слои, гайды по тренировкам: https://rentry.co/waavd - гайд по подготовке датасета и обучению LoRA для неофитов https://rentry.org/2chAI_hard_LoRA_guide - ещё один гайд по использованию и обучению LoRA https://rentry.org/59xed3 - более углубленный гайд по лорам, содержит много инфы для уже разбирающихся (англ.) ✱ LyCORIS (Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion) - проект по созданию алгоритмов для обучения дополнительных частей модели. Ранее имел название LoCon и предлагал лишь тренировку дополнительных conv слоёв. В настоящий момент включает в себя алгоритмы LoCon, LoHa, LoKr, DyLoRA, IA3, а так же на последних dev ветках возможность тренировки всех (или не всех, в зависимости от конфига) частей сети на выбранном ранге: https://github.com/KohakuBlueleaf/LyCORIS Подробнее про алгоритмы в вики https://2ch-ai.gitgud.site/wiki/tech/lycoris/ ✱ Dreambooth – для SD 1.5 обучение доступно начиная с 16 GB VRAM. Ни одна из потребительских карт не осилит тренировку будки для SDXL. Выдаёт отличные результаты. Генерирует полноразмерные модели: https://rentry.co/lycoris-and-lora-from-dreambooth (англ.) https://github.com/nitrosocke/dreambooth-training-guide (англ.) ✱ Текстуальная инверсия (Textual inversion), или же просто Embedding, может подойти, если сеть уже умеет рисовать что-то похожее, этот способ тренирует лишь текстовый энкодер модели, не затрагивая UNet: https://rentry.org/textard (англ.) ➤ Тренировка YOLO-моделей для ADetailer: YOLO-модели (You Only Look Once) могут быть обучены для поиска определённых объектов на изображении. В паре с ADetailer они могут быть использованы для автоматического инпеинта по найденной области. Подробнее в вики: https://2ch-ai.gitgud.site/wiki/tech/yolo/ Не забываем про золотое правило GIGO ("Garbage in, garbage out"): какой датасет, такой и результат. ➤ Гугл колабы ﹡Текстуальная инверсия: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb ﹡Dreambooth: https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb ﹡LoRA: https://colab.research.google.com/github/hollowstrawberry/kohya-colab/blob/main/Lora_Trainer.ipynb ➤ Полезное Расширение для фикса CLIP модели, изменения её точности в один клик и более продвинутых вещей, по типу замены клипа на кастомный: https://github.com/arenasys/stable-diffusion-webui-model-toolkit Гайд по блок мерджингу: https://rentry.org/BlockMergeExplained (англ.) Гайд по ControlNet: https://stable-diffusion-art.com/controlnet (англ.) Подборка мокрописек для датасетов от анона: https://rentry.org/te3oh Группы тегов для бур: https://danbooru.donmai.us/wiki_pages/tag_groups (англ.) Гайды по апскейлу от анонов: https://rentry.org/SD_upscale https://rentry.org/sd__upscale https://rentry.org/2ch_nai_guide#апскейл https://rentry.org/UpscaleByControl Коллекция лор от анонов: https://rentry.org/2chAI_LoRA Гайды, эмбеды, хайпернетворки, лоры с форча: https://rentry.org/sdgoldmine https://rentry.org/sdg-link https://rentry.org/hdgfaq https://rentry.org/hdglorarepo https://gitgud.io/badhands/makesomefuckingporn https://rentry.org/ponyxl_loras_n_stuff ➤ Legacy ссылки на устаревшие технологии и гайды с дополнительной информацией https://2ch-ai.gitgud.site/wiki/tech/legacy/ ➤ Прошлые треды https://2ch-ai.gitgud.site/wiki/tech/old_threads/ Шапка: https://2ch-ai.gitgud.site/wiki/tech/tech-shapka/
24 марта 22:53
Сохранен
530
26 декабря 2022
Сохранен
693
26 декабря 2022
Сохранен
566
14 ноября 2022
Сохранен
2715
31 июля 2023
Сохранен
1046
28 июня 2023
Сохранен
514
8 декабря 2022
Сохранен
62
17 марта 2023
Сохранен
529
21 декабря 2022
Сохранен
578
29 сентября 2022

Отзывы и предложения