К сожалению, значительная часть сохранённых до 2024 г. изображений и видео была потеряна (подробности случившегося). Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Сортировка: за
Активный
395
11 сентября 2025
Активный
72
11 сентября 2025
Сохранен
1789
24 марта 2025
Активный
547
Деградации тред — Доска уже давно нуждалась в таком местечке. В каком-то смысле сейчас его роль выполняет Начинайко-тред, зайдя туда, можно обосраться со смеху, если вы знаете математику хотя бы за первые два курса, пидоры. Новая ветвь /math, которую я отважился кудах, не просто раковая, она и есть рак по определению. Тем не менее, людям кудах-кудах выплескивать накопившееся говно, и чем размазывать его по всей доске, давайте лучше кудах его здесь, чтобы потом дружно и с кайфом обмазываться им. Основная тематика трэда, как не сложно догадаться, кудах-кудах! В любом виде! Будь то паста али картинка. Крайне приветствуется кудах-кудах, если кудах будет оригинальным (в треде деградации, кудах). У нас имеется кудах мемесов http://pastebin.com/e38Yuj5V однако, он устарел, к тому же ленивый Посметьев пидор начинайко-трэдов давно не редактирует. Вместо него в ближайшее время я кудах кудах-кудах, а точнее кудах. Любой желающий сможет внести свой кудах в новый кудах, для этого нужно будет отправить мне кудах с вашим кудах-кудахом на самом сайте (к сожалению, для этого нужны кудахи). Утратившие свой кудах микрокудахи указаны не будут. Нынешний кудах я начну с нескольких кудахов, которые даже самые кудахные кудахи знают, это нужно для кудаха. Ну а теперь задержите дыхание, зажмите пальцами нос, ибо начинается ваше погружение в сточные мемовые воды math'а! ~~~Кудах!~~~
11 сентября 2025
Активный
551
11 сентября 2025
Сохранен
6
12 ноября 2023
Активный
26
Metamath — Ранее я создал Мендельсона-тред, теперь хочу обратить внимание на другую достаточно клёвую вещь: Metamath. (Это связано с основаниями математики, но не спешите отчаиваться) В данном треде я постараюсь ответить на все возникшие у анонов вопросы. Его вроде надо сделать модерируемым. FAQ: 1)Что это? Это теория типов для формального доказательств первопорядковых языков. Ну то есть язык программирования для ZFC, NBG, геометрии (Тарского) и ещё много чего первопорядкового. Всё это доступно онлайн в удобном гипертекстовом виде. 2)Какие профиты? а) Очень большая библиотека доказательств, легко читается. Имеет достаточно долгую историю - с девяностых. б) Пруфассистант: два режима, как в Coq: либо конструируешь доказательство, либо интерактивный режим. в) Непосредственно прилагается самоучитель. г) Простой (300 строк на питоне) верификатор доказательств. д) Имеет модель в ZFC. (самая мякотка, смотри пункт 3) е) Живое коммьюнити. 3) Какие задачи? Есть такая статья: http://us.metamath.org/ocat/model/model.pdf Не знаю как анону, но мне было бы очень любопытно в ней разобраться. 4) Почему "лучше" чем HoTT, Coq, HOL и т.д.? Да потому что ZFC и логика предикатов - это математический стандарт де-факто, поэтому знание metamath может помочь вам понимать беглую речь преподавателей в институте. (А не страдать по крайностям "это очевидно" и "ничерта не понятно".) Смело задавайте вопросы и высказывайте мнения.
11 сентября 2025
Активный
333
1 ноября 2025
Активный
57
11 сентября 2025
Сохранен
17
11 июня 2024
Сохранен
5
Имеется система, которая через равные промежутки — Имеется система, которая через равные промежутки времени Δt генерирует набор, состоящий из случайного числа, повторяющегося случайное число раз в том числе 0 раз. Например, эта система может сгенерировать следующую последовательность наборов за время 5∙Δt: {5,5,5,5}, {3,3,3,3,3,3,3}, {}, {7}, {9, 9, 9}. Примеры распределения самих чисел и их количества в каждом наборе показаны на первом и втором пиках соответственно. Также известно, что параметры данных распределений меняются со временем. То есть, если считать их близкими к нормальному распределению, то можно говорить о том, что матожидание и дисперсия этих распределений не постоянны. Задача: имея данные о наборах, выданных системой в предыдущие моменты времени, определить вероятность того, что за некоторое время T система сгенерирует не менее N чисел, которые больше чем X. Очень надеюсь, что математический анон поможет мне решить данную задачу или хотя бы посоветует, каком направлении копать.
11 июня 2024
Сохранен
45
28 февраля 2025
Сохранен
2
11 июня 2024
Активный
68
11 сентября 2025
Сохранен
12
11 сентября 2024
Активный
26
11 сентября 2025
Сохранен
94
11 сентября 2024
Сохранен
71
11 июня 2024
Сохранен
12
11 сентября 2024
Сохранен
28
5 декабря 2024
Сохранен
1277
11 сентября 2024
Сохранен
614
Оснований тред №4 — Помимо трех основных направлений в основаниях - формализм, логицизм и интуиционизм, иногда возникали идеи построить математику на кардинально отличных от общепринятых принципах. Одно из таких направлений - Сигнифика, Significs. Попытка основать математику на основе естественного языка (т.к. язык и математика - это деятельность человека) принадлежит учителю Брауэра, голландскому математику и философу Герриту Маннури. Согласно его теории уровней языка (таких уровней 5), чисто формальный язык математики (5ый уровень) отличается от языка общения детей (1ый уровень) только степенью связи между словами и их сочетаниями (языковыми конструкциями). Идеи Маннури более чем на столетие опередили свое время, т.к. при его жизни не было методов автоматизированной работы с текстом (NLP, Natural Language Processing). В наше время такие методы развиты достаточно, чтобы поставить вопрос о построении вычислительной сигнифики (Computational Significs) для нужд математики, в т.ч. автоматизированного доказательства теорем и т.о. реализации на этих основах прувера, отличающегося принципом функционирования от всех остальных чуть менее чем полностью. Предыдущий - https://2ch.hk/math/res/17772.html Архив тредов
5 декабря 2024
Сохранен
1134
11 июня 2024
Активный
310
11 сентября 2025
Сохранен
1180
11 июня 2024